-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcooc.py
46 lines (39 loc) · 1.65 KB
/
cooc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python3
from scipy.sparse import *
import numpy as np
import pickle
from nltk import bigrams, trigrams
def to_cooc(path_vocab = 'global_vocab.pkl', path_tweets_pos = "clean_pos_bitri=True", path_tweets_neg = "clean_neg_bitri=True",path_tweets_test ="clean_test_bitri=True", dest = 'cooc_full.pkl'):
"""This method takes optionally the path of the pickled vocab
and the path of the tweets. It then build with them to co-ocurrence matrix
write the result in the file dest
"""
with open(path_vocab, 'rb') as f:
vocab = pickle.load(f)
vocab_size = len(vocab)
data, row, col = [], [], []
counter = 1
for fn in [path_tweets_pos, path_tweets_neg, path_tweets_test]:
with open(fn) as f:
for line in f:
tokens = line.strip().split()
def generator(unigrams):
yield from unigrams
yield from bigrams(unigrams)
yield from trigrams(unigrams)
tokens_ids = [vocab.get(t, -1) for t in generator(tokens)]
tokens_ids = [t for t in tokens_ids if t >= 0]
for t in tokens_ids:
for t2 in tokens_ids:
data.append(1)
row.append(t)
col.append(t2)
if counter % 10000 == 0:
print(counter)
counter += 1
print("creating sparse matrix")
cooc = coo_matrix((data, (row, col)))
print("summing duplicates (this can take a while)")
cooc.sum_duplicates()
with open(dest, 'wb') as f:
pickle.dump(cooc, f, pickle.HIGHEST_PROTOCOL)