-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paths4-advanced-analytics.Rmd
224 lines (145 loc) · 5.71 KB
/
s4-advanced-analytics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
title: "Session 4: advanced analytics"
author: "Ben Raymond, Adrien Ickowicz"
date: "<div id='logo_footer'></div>"
output:
xaringan::moon_reader:
lib_dir: libs
seal: false
self_contained: false
css: ["extra/extra.css"]
chakra: extra/remark-latest.min.js
nature:
highlightStyle: github
highlightLines: false
beforeInit: "extra/macros.js"
---
layout: true
<div class="my-footer">
<div class="my-footer-box"><a href="https://openvolley.org/"><img style="display:inline;" src="extra/ovoutline-w.png"/>openvolley.org</a></div>
<div class="my-footer-box"><a href="https://https://volleyball.ca/"><img src="extra/vc-w-wide.png"/></a></div>
<div class="my-footer-box"><a href="https://untan.gl/"><img src="extra/su_title-w.png"/></a></div>
</div>
---
```{r xaringanExtra-clipboard, echo=FALSE}
xaringanExtra::use_clipboard()
xaringanExtra::use_panelset()
```
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE)
options(knitr.kable.NA="")
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE, cache = FALSE, dpi = 120)
library(dplyr)
library(formattable)
library(ggplot2)
library(ggsci)
library(datavolley)
library(ovdata)
`%eq%` <- function(x,y) x==y & !is.na(x) & !is.na(y)
```
class: inverse, logo, center
<img src="extra/3logo2.png" style="width:65%; margin-bottom:50px;" />
## Session 4: Advanced analytics
### Adrien Ickowicz, Ben Raymond
##### with valuable contributions from many others...
---
## What are we going to talk about
- Statistical modelling
- descriptive statistics vs inference
- Is causality reachable ?
- Inference via simulation vs Inference via statistical modelling
- Simulating matches
- the <span class="pkg">volleysim</span> package
- the <span class="pkg">bandit</span> package
- Statistical (inference-based) models
- Use the example of the effect of player height on passing performance
- the effect of serve speed on outcome? Serve error vs breakpoint ?
---
## Statistical modelling
#### descriptive statistics vs inference
From wiki:
A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics.
Example of descriptive statistics:
* Number of serve errors per set
* Break-point rate per set
Example of inference:
* How do these two quantities relate to one another?
---
## Statistical modelling
#### Causality
<img src="extra/xkcd_causality.png" style="width:70%; margin-bottom:50px;" />
credit: https://xkcd.com/
---
## Statistical modelling
#### Causality
<img src="extra/xkcd_causality_v2.png" style="width:90%; margin-bottom:50px;" />
credit: https://xkcd.com/
---
## Statistical modelling
#### Causality and correlation
https://www.tylervigen.com/spurious-correlations
So what is the problem?
- An increase in the number of people at the beach causes a higher number of ice cream sales
- An increase in the number of people at the beach causes a higher number of shark attacks
- Therefore, people need ice cream for comfort after a shark attack; or is it that sharks attack people after they ate ice cream because they taste better?
---
## Statistical modelling
#### Inference via simulation vs Inference via statistical modelling
When do we use either:
- When the world can be simplified without loss of (too much) information, we can simulate;
- Example: Can we simplify a volleyball game if we only want to know who is going to win? Anyone has an opinion?
- When the world is too complex, and we have no clue or the process is convoluted, we may want to try something simpler at first;
- Example: Are tall players better passers than short players?
In a nutshell, when you cannot narrow down the factors that influence the uncertainty to a handy few, forget about simulation.
---
## Simulating matches
#### the <span class="pkg">volleysim</span> package:
```{r list_function_vs, results='asis'}
library(volleysim)
list_fun_vs <- lsf.str("package:volleysim")
cat(paste('-', list_fun_vs), sep = '\n')
```
---
## Simulating matches
#### the <span class="pkg">volleysim</span> package:
A quick overview: https://untan.gl/r-package-simulating-volleyball.html
Our turn. Open `s4-example-volleysim`.
---
## Simulating matches
The bandit functions in the <span class="pkg">ovlytics</span> package
```{r list_function_ovl, results='asis'}
library(ovlytics)
list_fun_ovl <- lsf.str("package:ovlytics")
cat(paste('-', list_fun_ovl[c(14,11, 10, 8, 4)]), sep = '\n')
```
What is this? See https://untan.gl/setter-choice.html
Our turn. Open `s4-example-bandit`.
And if you dont want to code... https://apps.untan.gl/bandit/
---
## Do you know...
More analytics articles:
https://untan.gl/index.html
---
## Statistical models
#### Player height and passing performance
Question: Does height influence the passing quality?
Open `s4-player-height-passing`.
---
## Statistical models
#### Serve agression, speed and outcome
Question 1 : Should we ban serving errors ?
Question 2 : Is there an optimal serve speed for which the expected break-point is maximum ?
Open `s4-serve-speed-example`.
---
## Statistical models
#### Identifying a defensive system
A blog post: https://untan.gl/identifying-defensive-systems.html
An app: https://apps.untan.gl/volleydef/
<img src="extra/defensive_zones.png" style="width:90%; margin-bottom:50px;" />
---
## Statistical models
#### Identifying a reception system
Can we do the same with reception?
An app also: https://apps.untan.gl/volleypass/
<img src="extra/reception_zones_P1.png" style="width:70%; margin-bottom:10px;" />
WMCH 2018 - Italy - P2. What is happening?