-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paths3-advanced-reports.html
719 lines (586 loc) · 22.8 KB
/
s3-advanced-reports.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Session 3: advanced reports</title>
<meta charset="utf-8" />
<meta name="author" content="Adrien Ickowicz, Ben Raymond" />
<script src="libs/header-attrs/header-attrs.js"></script>
<script src="libs/clipboard/clipboard.min.js"></script>
<link href="libs/xaringanExtra-clipboard/xaringanExtra-clipboard.css" rel="stylesheet" />
<script src="libs/xaringanExtra-clipboard/xaringanExtra-clipboard.js"></script>
<script>window.xaringanExtraClipboard(null, {"button":"Copy Code","success":"Copied!","error":"Press Ctrl+C to Copy"})</script>
<link href="libs/panelset/panelset.css" rel="stylesheet" />
<script src="libs/panelset/panelset.js"></script>
<script src="libs/kePrint/kePrint.js"></script>
<link href="libs/lightable/lightable.css" rel="stylesheet" />
<link rel="stylesheet" href="extra/extra.css" type="text/css" />
</head>
<body>
<textarea id="source">
layout: true
<div class="my-footer">
<div class="my-footer-box"><a href="https://openvolley.org/"><img style="display:inline;" src="extra/ovoutline-w.png"/>openvolley.org</a></div>
<div class="my-footer-box"><a href="https://https://volleyball.ca/"><img src="extra/vc-w-wide.png"/></a></div>
<div class="my-footer-box"><a href="https://untan.gl/"><img src="extra/su_title-w.png"/></a></div>
</div>
---
class: inverse, logo, center
<img src="extra/3logo2.png" style="width:65%; margin-bottom:50px;" />
## Session 3: Advanced reports
### Adrien Ickowicz, Ben Raymond
##### with valuable contributions from many others...
---
## What are we going to talk about
- create tables with R
- using <span class="Rpkg">rmarkdown</span>
-the <span class="pkg">volleyreport</span> package
- volleyball-specific plots (court plots and other)
- plotting transformation from image space to court space
- overlaying plots onto image
- the <span class="pkg">ovva</span> and <span class="pkg">ovideo</span> packages:
- saving playlists to CSV
- creating your own playlists directly with `ov_video_playlist`
- viewing them with `ovplayer`
- sharing them with `ov_playlist_to_html` or the `ov_editry_clips` functions
- the Science Untangled app for this
---
## Create tables in R
* What kind of tables can you create using R: https://community.rstudio.com/c/table-gallery/64
* A number of packages are available: <span class="Rpkg">DT</span>, <span class="Rpkg">gt</span>, <span class="Rpkg">reactable</span> ...
* Let's focus on <span class="Rpkg">kableExtra</span> (for its html capabilities)
* Need to install it
* Try it
* Then the sky is the limit
.panelset[
.panel[.panel-name[R Code]
```r
library(datavolley)
library(kableExtra)
dvw <- dv_read(dv_example_file())
kable(head(plays(dvw)[,c('code', "player_name", 'skill')]))
```
]
.panel[.panel-name[HTML output]
<table>
<thead>
<tr>
<th style="text-align:left;"> code </th>
<th style="text-align:left;"> player_name </th>
<th style="text-align:left;"> skill </th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;"> *P04&gt;LUp </td>
<td style="text-align:left;"> </td>
<td style="text-align:left;"> </td>
</tr>
<tr>
<td style="text-align:left;"> *z3&gt;LUp </td>
<td style="text-align:left;"> </td>
<td style="text-align:left;"> </td>
</tr>
<tr>
<td style="text-align:left;"> aP10&gt;LUp </td>
<td style="text-align:left;"> </td>
<td style="text-align:left;"> </td>
</tr>
<tr>
<td style="text-align:left;"> az3&gt;LUp </td>
<td style="text-align:left;"> </td>
<td style="text-align:left;"> </td>
</tr>
<tr>
<td style="text-align:left;"> *06SM#~~~18C </td>
<td style="text-align:left;"> ANA MARIJA VOVK </td>
<td style="text-align:left;"> Serve </td>
</tr>
<tr>
<td style="text-align:left;"> a06RM=~~~18CW4 </td>
<td style="text-align:left;"> KARMINA SUŠNIK </td>
<td style="text-align:left;"> Reception </td>
</tr>
</tbody>
</table>
]
]
---
## Create tables in R
.panelset[
.panel[.panel-name[Try it!]
Create a table with your own data, and share it!
]
.panel[.panel-name[My R Code]
```r
library(dplyr)
library(tidyr)
library(stringr)
library(kableExtra)
dvw$meta$teams %>% dplyr::select(.data$team, .data$sets_won) %>%
dplyr::rename(Teams = "team", 'Final score' = "sets_won") %>%
kable(format = 'html', escape = FALSE, col.names = c("MATCH RESULT", ""),
table.attr = "class=\"widetable\"") %>%
kable_styling(bootstrap_options = c("striped", "hover"),
full_width = TRUE, font_size = 15) %>%
row_spec(1:2, bold = TRUE) %>%
row_spec(0, bold = TRUE, color = "white", background = "black" ) %>%
column_spec(1, border_left = "grey") %>%
column_spec(2, border_right = "grey") %>%
row_spec(2, extra_css = paste0("border-bottom:", "grey"))
```
]
.panel[.panel-name[My HTML output]
<table class="widetable table table-striped table-hover" style="font-size: 15px; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;font-weight: bold;color: white !important;background-color: black !important;"> MATCH RESULT </th>
<th style="text-align:right;font-weight: bold;color: white !important;background-color: black !important;"> </th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;font-weight: bold;border-left:grey;"> Braslovče </td>
<td style="text-align:right;font-weight: bold;border-right:grey;"> 3 </td>
</tr>
<tr>
<td style="text-align:left;font-weight: bold;border-left:grey;border-bottom:grey"> Nova KBM Branik </td>
<td style="text-align:right;font-weight: bold;border-right:grey;border-bottom:grey"> 0 </td>
</tr>
</tbody>
</table>
]
]
---
## Using rmarkdown
R Markdown is a format for writing reproducible, dynamic reports with R. Use it to embed R code and results into slideshows, pdfs, html documents, Word files and more. Examples:
* The current presentation!
* .Rmd files
* Let's open one and check what's in it...
* It has its own grammar again!
---
## Using rmarkdown
* outputs from <span class="pkg">volleyreport</span>
```r
library(volleyreport)
vr <- vr_match_summary(dvw, format = "paged_png", vote = FALSE)
browseURL(vr)
```
---
## Volleyball specfic plots
.panelset[
.panel[.panel-name[Court]
<img src="s3-advanced-reports_files/figure-html/court-1.png" height="400px" />
]
.panel[.panel-name[Court - zones]
<img src="s3-advanced-reports_files/figure-html/court_zones-1.png" height="400px" />
]
.panel[.panel-name[Court - cones]
<img src="s3-advanced-reports_files/figure-html/court_cones-1.png" height="400px" />
]
.panel[.panel-name[Court - cones (ctd)]
<img src="s3-advanced-reports_files/figure-html/court_cones2-1.png" height="400px" />
]
]
---
## Volleyball specfic plots
.panelset[
.panel[.panel-name[Court]
```r
ggplot() + ggcourt(labels = NULL, show_zones = FALSE) + theme_bw()
```
]
.panel[.panel-name[Court - zones]
```r
library(ggplot2)
library(dplyr)
x <- dv_read(dv_example_file(1))
## calculate attack frequency by zone, per team
px <- plays(x)
attack_rate <- px %>% dplyr::filter(skill == "Attack") %>%
group_by(team, start_zone) %>% dplyr::summarize(n_attacks = n()) %>%
mutate(rate = n_attacks/sum(n_attacks)) %>% ungroup
## add x, y coordinates associated with the zones
attack_rate <- cbind(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))
## additionally specify the subzone to dv_xy if you want to plot by subzone (and your data
## were scouted with subzones)
## for team 2, these need to be on the top half of the diagram
tm2i <- attack_rate$team == teams(x)[2]
attack_rate[tm2i, c("x", "y")] <- dv_flip_xy(attack_rate[tm2i, c("x", "y")])
ggplot(attack_rate, aes(x, y, fill = rate)) + geom_tile() + ggcourt(labels = teams(x)) +
scale_fill_gradient2(name = "Attack rate")
```
]
.panel[.panel-name[Court - cones]
```r
x <- dv_read(ovdata_example("190301_kats_beds"))
px <- plays(x)
## select left-side (X5) attacks
attack_rate <- px %>% dplyr::filter(attack_code == "X5") %>%
group_by(start_zone, end_cone) %>% dplyr::summarize(n_attacks = n()) %>%
mutate(rate = n_attacks/sum(n_attacks)) %>% ungroup
## add starting locations
attack_rate <- bind_cols(attack_rate, dv_xy(attack_rate$start_zone, end = "lower"))
## and end locations
attack_rate <- bind_cols(attack_rate, dv_cone2xy(start_zones = attack_rate$start_zone,
end_cones = attack_rate$end_cone, end = "upper"))
ggplot(attack_rate, aes(x, y, xend = ex, yend = ey, colour = rate, size = rate)) +
ggcourt(labels = NULL) +
geom_segment(arrow = arrow(length = unit(2, "mm"), type = "closed", angle = 20)) +
scale_colour_distiller(palette = "OrRd", direction = 1, name = "Attack rate") +
guides(size = "none")
```
]
.panel[.panel-name[Court - cones (ctd)]
```r
cxy <- dv_cone2xy(start_zones = attack_rate$start_zone, end_cones = attack_rate$end_cone,
as = "polygons")
## this returns coordinates as list columns, unpack these to use with ggplot
## also add an identifier for each polygon
cxy <- data.frame(cx = unlist(cxy$ex), cy = unlist(cxy$ey),
id = unlist(lapply(seq_len(nrow(cxy)), rep, 4)))
attack_rate <- attack_rate %>% mutate(id = row_number()) %>% left_join(cxy, by = "id")
ggplot(attack_rate, aes(cx, cy, group = id, fill = rate)) +
ggcourt(labels = NULL) +
geom_polygon() +
scale_fill_distiller(palette = "OrRd", direction = 1, name = "Attack rate")
```
]
]
---
## Volleyball specfic plots - heatmaps
.panelset[
.panel[.panel-name[Data pts]
<img src="s3-advanced-reports_files/figure-html/data_pts-1.png" height="400px" />
]
.panel[.panel-name[Heatmap]
<img src="s3-advanced-reports_files/figure-html/htmp-1.png" height="400px" />
]
.panel[.panel-name[Heatmap - precision]
<img src="s3-advanced-reports_files/figure-html/htmp_p-1.png" height="400px" />
]
]
---
## Volleyball specfic plots - heatmaps
.panelset[
.panel[.panel-name[Data pts]
```r
Na <- 20
set.seed(17)
px2 <- tibble(skill = "Attack", end_coordinate_x = c(runif(Na, min = 0.4, max = 1.2), runif(Na, min = 2, max = 3)),
end_coordinate_y = c(runif(Na, min = 4.5, max = 6.6), runif(Na, min = 4.9, max = 6.6)))
ggplot(px2 %>% dplyr::filter(skill == "Attack"), aes(end_coordinate_x, end_coordinate_y)) +
ggcourt(labels = NULL, court = "upper") +
geom_point(colour = "dodgerblue")
```
]
.panel[.panel-name[Heatmap]
```r
hx <- ovlytics::ov_heatmap_kde(px2 %>% dplyr::filter(skill == "Attack") %>% dplyr::select(end_coordinate_x, end_coordinate_y),
resolution = "coordinates", court = "upper")
## then plot it
ggplot(hx, aes(x, y, fill = density)) +
scale_fill_distiller(palette = "Spectral", guide = "none") +
geom_raster() +
ggcourt(labels = NULL, court = "upper") ## plot the court last, so that the lines overlay the heatmap
```
]
.panel[.panel-name[Heatmap - precision]
```r
ggplot(px2 %>% dplyr::filter(skill == "Attack"), aes(end_coordinate_x, end_coordinate_y)) +
stat_density_2d(geom = "raster", aes_string(fill = "..density.."), contour = FALSE, h = 0.85, n = c(60, 120)) +
scale_fill_distiller(palette = "Spectral", guide = "none") +
ggcourt(labels = NULL, court = "upper")
```
]
]
---
## Volleyball specfic plots - misc
.panelset[
.panel[.panel-name[Posture]
<img src="extra/passing_Kacper_Piechocki.png" style="width:90%; margin-bottom:50px;" />
]
.panel[.panel-name[R Code]
```r
library(png)
img <- readPNG('extra/man-volleyball-passing.png')
g <- grid::rasterGrob(img, interpolate=TRUE)
ggplot() +
annotation_custom(g, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf) +
geom_point()
```
]
]
---
## Plotting transformations
.pull-left[
* What is the image space?
* What is the court space?
* What is a 2D homography?
<img src="extra/2D_homography.png" style="width:90%; margin-bottom:50px;" />
Resource: https://en.wikipedia.org/wiki/Camera_matrix
]
.pull-right[
<img src="extra/example_passing_court_to_image_singleC.png" style="width:75%; margin-bottom:10px; margin-left:40px;" />
]
* Check out <span class="pkg">ovideo</span>
---
## Overlaying plots onto court images
1. Create an empty court image
2. Identify the stats to be displayed
3. Create the shape of interest, and project them
4. Plot the ensemble
.panelset[
.panel[.panel-name[R Code]
```r
imref <- system.file("extdata/2019_03_01-KATS-BEDS-court.jpg", package = "ovideo")
## fake distribution data
dx <- tribble(~start_zone, ~percent,
4, 35,
3, 20,
2, 30,
8, 15)
## xy start zone coords
dx <- cbind(dx, datavolley::dv_xy(dx$start_zone))
```
]
.panel[.panel-name[R Code (ctd)]
```r
## the court reference
crt <- data.frame(image_x = c(0.05397063, 0.95402573, 0.75039756, 0.28921230),
image_y = c(0.02129301, 0.02294600, 0.52049712, 0.51884413),
court_x = c(0.5, 3.5, 3.5, 0.5),
court_y = c(0.5, 0.5, 6.5, 6.5))
image_wh <- c(1280, 720)
## create polygons to plot in image space
dx <- dx %>% group_by(start_zone, percent) %>% dplyr::summarize(x = x + c(-0.5, 0.5, 0.5, -0.5, -0.5), y = y + c(-0.5, -0.5, 0.5, 0.5, -0.5), .groups = "drop")
dx <- cbind(dx, setNames(ovideo::ov_transform_points(dx[, c("x", "y")], ref = crt, direction = "to_image"), c("ix", "iy")))
dx <- dx %>% mutate(ix = ix * image_wh[1], iy = iy * image_wh[2])
```
]
.panel[.panel-name[R Code (ctd)]
```r
ggplot2::ggplot(dx) +
## background image
ggplot2::annotation_custom(grid::rasterGrob(jpeg::readJPEG(imref)), xmin = 0, xmax = image_wh[1], ymin = 0, ymax = image_wh[2]) +
## distribution polygons
geom_polygon(aes(x = ix, y = iy, group = start_zone, fill = percent)) +
## finish off
scale_fill_distiller(palette = "Purples", direction = 1, name = "%") +
ggplot2::coord_fixed(xlim = c(0, image_wh[1]), ylim = c(0, image_wh[2])) + ggplot2::theme_void()
```
]
.panel[.panel-name[Image]
<img src="s3-advanced-reports_files/figure-html/rcode_plot_transfo image-1.png" width="200px" />
]
]
---
## Overlaying plots onto court images
.panelset[
.panel[.panel-name[Your turn!]
* Install <span class="pkg">volleyreport</span>
* Use it to create the vizualization you'd like:
* `ov_video_frame` extract frame from video
* `ov_shiny_court_ref` helps you define the projection
* other functions from other packages
]
.panel[.panel-name[Example code]
```r
video_file = "~/Documents/Donnees/VolleyBall/Dropbox/server_videos/Southern League 2022 Women - Autumn Videos/2022_04_11W-VIK_vs_UTAS.M4V"
img_ref = ovideo::ov_video_frame(video_file, t = 100)
ref <- ovideo::ov_shiny_court_ref(img_ref)
image_wh <- c(1280, 720)
## create polygons to plot in image space
dx <- tribble(~start_zone, ~percent,4, 35, 3, 20,2, 30,8, 15)
## xy start zone coords
dx <- cbind(dx, datavolley::dv_xy(dx$start_zone))
dx <- dx %>% group_by(start_zone, percent) %>% dplyr::summarize(x = x + c(-0.5, 0.5, 0.5, -0.5, -0.5), y = y + c(-0.5, -0.5, 0.5, 0.5, -0.5), .groups = "drop")
dx <- cbind(dx, setNames(ovideo::ov_transform_points(dx[, c("x", "y")], ref = ref$court_ref, direction = "to_image"), c("ix", "iy")))
dx <- dx %>% mutate(ix = ix * image_wh[1], iy = iy * image_wh[2])
ggplot2::ggplot(dx) +
ggplot2::annotation_custom(grid::rasterGrob(jpeg::readJPEG(img_ref)), xmin = 0, xmax = image_wh[1], ymin = 0, ymax = image_wh[2]) +
geom_polygon(aes(x = ix, y = iy, group = start_zone, fill = percent), alpha = 0.5) +
scale_fill_distiller(palette = "Purples", direction = 1, name = "%") +
ggplot2::coord_fixed(xlim = c(0, image_wh[1]), ylim = c(0, image_wh[2])) + ggplot2::theme_void()
```
]
.panel[.panel-name[Example output]
<img src="extra/example_projection.png" style="width:75%; margin-bottom:50px;" />
]
]
---
## Working with videos
What can we do with videos?
* Create playlists
* Saving playlists to csv
* Share playlists with <span class="pkg">ovplayer</span>
* Share palylists as objects
* More ? SU's <span class="pkg">ovva</span>, <span class="pkg">volleyspike</span>...
---
## Working with videos
Function #1: `ov_video_playlist()`:
.panelset[
.panel[.panel-name[Create playlist]
```r
library(ovideo)
x <- datavolley::dv_read(filename = "&180527 iri jpn.dvw")
dv_meta_video(x) <- "NisDpPFPQwU"
## extract play-by-play data
px <- datavolley::plays(x)
px$video_time
## find pipe (XP) attacks in transition
px <- px[which(px$attack_code == "XP" & px$phase == "Transition"), ]
## create playlist
ply <- ov_video_playlist(px, x$meta, timing = ov_video_timing())
## with custom timing
ply <- ov_video_playlist(px, x$meta,
timing = ov_video_timing_df(data.frame(skill = "Attack", phase = "Transition",
start_offset = -5, duration = 10, stringsAsFactors = FALSE)))
```
]
.panel[.panel-name[Then what?]
```r
# To ovplayer:
shinyApp(
ui = fluidPage(
ov_video_js(youtube = TRUE, version = 2),
ov_video_player(id = "yt_player", type = "youtube",
version = 2, controller_var = "my_dv",
style = "height: 480px; background-color: black;",
controls = tags$button("Go",
onclick = ov_playlist_as_onclick(ply, "yt_player",
controller_var = "my_dv")))
),
server = function(input, output) {},
)
```
]
.panel[.panel-name[Html share]
```r
extra_cols <- c("home_team", "visiting_team", "video_time", "code", "set_number", "home_team_score", "visiting_team_score")
## make the playlist with extra columns included
ply <- ov_video_playlist(px, x$meta, extra_cols = c(extra_cols, "player_name"))
## use player name as the subtitle
ply$subtitle <- ply$player_name
## convert to HTML
f <- ov_playlist_to_html(ply, table_cols = extra_cols)
## and finally open it!
browseFile(f)
```
]
]
---
## Working with videos
* Create clips? Create a video highlight:
* Check out <span class="pkg">ovva</span>,
* Look into `ov_editry_clip()`
* Open `s3-create-video-highlight.R` for an example script
---
## Science untangled - videos, tables, communicating efficiently
* https://apps.untan.gl/ovva/
* Example video
* https://apps.untan.gl/spike-example-R2022/
* Example for the women's world championship 2018
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="extra/remark-latest.min.js"></script>
<script src="extra/macros.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>