-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcper-utils.c
324 lines (284 loc) · 10.1 KB
/
cper-utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/**
* Describes utility functions for parsing CPER into JSON IR.
*
* Author: [email protected]
**/
#include <stdio.h>
#include <json.h>
#include <libcper/Cper.h>
#include <libcper/cper-utils.h>
//The available severity types for CPER.
const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected",
"Informational" };
//Converts the given generic CPER error status to JSON IR.
json_object *
cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status)
{
json_object *error_status_ir = json_object_new_object();
//Error type.
json_object_object_add(error_status_ir, "errorType",
integer_to_readable_pair_with_desc(
error_status->Type, 18,
CPER_GENERIC_ERROR_TYPES_KEYS,
CPER_GENERIC_ERROR_TYPES_VALUES,
CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
"Unknown (Reserved)"));
//Boolean bit fields.
json_object_object_add(
error_status_ir, "addressSignal",
json_object_new_boolean(error_status->AddressSignal));
json_object_object_add(
error_status_ir, "controlSignal",
json_object_new_boolean(error_status->ControlSignal));
json_object_object_add(
error_status_ir, "dataSignal",
json_object_new_boolean(error_status->DataSignal));
json_object_object_add(
error_status_ir, "detectedByResponder",
json_object_new_boolean(error_status->DetectedByResponder));
json_object_object_add(
error_status_ir, "detectedByRequester",
json_object_new_boolean(error_status->DetectedByRequester));
json_object_object_add(
error_status_ir, "firstError",
json_object_new_boolean(error_status->FirstError));
json_object_object_add(
error_status_ir, "overflowDroppedLogs",
json_object_new_boolean(error_status->OverflowNotLogged));
return error_status_ir;
}
//Converts the given CPER-JSON generic error status into a CPER structure.
void ir_generic_error_status_to_cper(
json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper)
{
error_status_cper->Type = readable_pair_to_integer(
json_object_object_get(error_status, "errorType"));
error_status_cper->AddressSignal = json_object_get_boolean(
json_object_object_get(error_status, "addressSignal"));
error_status_cper->ControlSignal = json_object_get_boolean(
json_object_object_get(error_status, "controlSignal"));
error_status_cper->DataSignal = json_object_get_boolean(
json_object_object_get(error_status, "dataSignal"));
error_status_cper->DetectedByResponder = json_object_get_boolean(
json_object_object_get(error_status, "detectedByResponder"));
error_status_cper->DetectedByRequester = json_object_get_boolean(
json_object_object_get(error_status, "detectedByRequester"));
error_status_cper->FirstError = json_object_get_boolean(
json_object_object_get(error_status, "firstError"));
error_status_cper->OverflowNotLogged = json_object_get_boolean(
json_object_object_get(error_status, "overflowDroppedLogs"));
}
//Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[])
{
json_object *result = json_object_new_object();
UINT64 *cur = start;
for (int i = 0; i < len; i++) {
json_object_object_add(result, names[i],
json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[])
{
json_object *result = json_object_new_object();
UINT32 *cur = start;
for (int i = 0; i < len; i++) {
json_object_object_add(result, names[i],
json_object_new_uint64(*cur));
cur++;
}
return result;
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len,
const char *names[])
{
UINT64 *cur = start;
for (int i = 0; i < len; i++) {
*cur = json_object_get_uint64(
json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single object containing UINT32s into a uniform struct.
void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len,
const char *names[])
{
UINT32 *cur = start;
for (int i = 0; i < len; i++) {
*cur = (UINT32)json_object_get_uint64(
json_object_object_get(ir, names[i]));
cur++;
}
}
//Converts a single integer value to an object containing a value, and a readable name if possible.
json_object *integer_to_readable_pair(UINT64 value, int len, const int keys[],
const char *values[],
const char *default_value)
{
json_object *result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_uint64(value));
//Search for human readable name, add.
const char *name = default_value;
for (int i = 0; i < len; i++) {
if ((UINT64)keys[i] == value) {
name = values[i];
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Converts a single integer value to an object containing a value, readable name and description if possible.
json_object *integer_to_readable_pair_with_desc(int value, int len,
const int keys[],
const char *values[],
const char *descriptions[],
const char *default_value)
{
json_object *result = json_object_new_object();
json_object_object_add(result, "value", json_object_new_int(value));
//Search for human readable name, add.
const char *name = default_value;
for (int i = 0; i < len; i++) {
if (keys[i] == value) {
name = values[i];
json_object_object_add(
result, "description",
json_object_new_string(descriptions[i]));
}
}
json_object_object_add(result, "name", json_object_new_string(name));
return result;
}
//Returns a single UINT64 value from the given readable pair object.
//Assumes the integer value is held in the "value" field.
UINT64 readable_pair_to_integer(json_object *pair)
{
return json_object_get_uint64(json_object_object_get(pair, "value"));
}
//Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
json_object *bitfield_to_ir(UINT64 bitfield, int num_fields,
const char *names[])
{
json_object *result = json_object_new_object();
for (int i = 0; i < num_fields; i++) {
json_object_object_add(result, names[i],
json_object_new_boolean((bitfield >> i) &
0x1));
}
return result;
}
//Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[])
{
UINT64 result = 0x0;
for (int i = 0; i < num_fields; i++) {
if (json_object_get_boolean(
json_object_object_get(ir, names[i]))) {
result |= (0x1 << i);
}
}
return result;
}
//Converts the given UINT64 array into a JSON IR array, given the length.
json_object *uint64_array_to_ir_array(UINT64 *array, int len)
{
json_object *array_ir = json_object_new_array();
for (int i = 0; i < len; i++) {
json_object_array_add(array_ir,
json_object_new_uint64(array[i]));
}
return array_ir;
}
//Converts a single UINT16 revision number into JSON IR representation.
json_object *revision_to_ir(UINT16 revision)
{
json_object *revision_info = json_object_new_object();
json_object_object_add(revision_info, "major",
json_object_new_int(revision >> 8));
json_object_object_add(revision_info, "minor",
json_object_new_int(revision & 0xFF));
return revision_info;
}
//Returns the appropriate string for the given integer severity.
const char *severity_to_string(UINT32 severity)
{
return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
}
//Converts a single EFI timestamp to string, at the given output.
//Output must be at least TIMESTAMP_LENGTH bytes long.
void timestamp_to_string(char *out, int out_len,
EFI_ERROR_TIME_STAMP *timestamp)
{
int written = snprintf(
out, out_len,
"%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu+00:00",
bcd_to_int(timestamp->Century) %
100, //Cannot go to three digits.
bcd_to_int(timestamp->Year) % 100, //Cannot go to three digits.
bcd_to_int(timestamp->Month), bcd_to_int(timestamp->Day),
bcd_to_int(timestamp->Hours), bcd_to_int(timestamp->Minutes),
bcd_to_int(timestamp->Seconds));
if (written < 0 || written >= out_len) {
printf("Timestamp buffer of insufficient size\n");
}
}
//Converts a single timestamp string to an EFI timestamp.
void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp)
{
//Ignore invalid timestamps.
if (timestamp == NULL) {
return;
}
sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu+00:00",
&out->Century, &out->Year, &out->Month, &out->Day, &out->Hours,
&out->Minutes, &out->Seconds);
//Convert back to BCD.
out->Century = int_to_bcd(out->Century);
out->Year = int_to_bcd(out->Year);
out->Month = int_to_bcd(out->Month);
out->Day = int_to_bcd(out->Day);
out->Hours = int_to_bcd(out->Hours);
out->Minutes = int_to_bcd(out->Minutes);
out->Seconds = int_to_bcd(out->Seconds);
}
//Helper function to convert an EDK EFI GUID into a string for intermediate use.
void guid_to_string(char *out, EFI_GUID *guid)
{
sprintf(out, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
}
//Helper function to convert a string into an EDK EFI GUID.
void string_to_guid(EFI_GUID *out, const char *guid)
{
//Ignore invalid GUIDs.
if (guid == NULL) {
return;
}
sscanf(guid,
"%08x-%04hx-%04hx-%02hhx%02hhx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
&out->Data1, &out->Data2, &out->Data3, out->Data4,
out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4,
out->Data4 + 5, out->Data4 + 6, out->Data4 + 7);
}
//Returns one if two EFI GUIDs are equal, zero otherwise.
int guid_equal(EFI_GUID *a, EFI_GUID *b)
{
//Check top base 3 components.
if (a->Data1 != b->Data1 || a->Data2 != b->Data2 ||
a->Data3 != b->Data3) {
return 0;
}
//Check Data4 array for equality.
for (int i = 0; i < 8; i++) {
if (a->Data4[i] != b->Data4[i]) {
return 0;
}
}
return 1;
}