-
-
Notifications
You must be signed in to change notification settings - Fork 21
/
utils.py
257 lines (211 loc) · 7.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import re
from aqt.utils import tooltip, getText, showWarning, showInfo, askUser
from collections import OrderedDict, defaultdict
from typing import List, Dict, Tuple
from anki.stats_pb2 import CardStatsResponse
from anki.cards import Card
from anki.stats import (
REVLOG_LRN,
REVLOG_REV,
REVLOG_RELRN,
REVLOG_CRAM,
REVLOG_RESCHED,
CARD_TYPE_REV,
QUEUE_TYPE_LRN,
QUEUE_TYPE_REV,
QUEUE_TYPE_DAY_LEARN_RELEARN,
)
from aqt import mw
import json
import math
import random
import time
from datetime import date, datetime, timedelta
from anki.utils import int_version
FSRS_ENABLE_WARNING = (
"Please either enable FSRS in your deck options, or disable the FSRS helper add-on."
)
def RepresentsInt(s):
try:
return int(s)
except ValueError:
return None
def reset_ivl_and_due(cid: int, revlogs: List[CardStatsResponse.StatsRevlogEntry]):
card = mw.col.get_card(cid)
card.ivl = int(revlogs[0].interval / 86400)
due = (
math.ceil(
(revlogs[0].time + revlogs[0].interval - mw.col.sched.day_cutoff) / 86400
)
+ mw.col.sched.today
)
if card.odid:
card.odue = max(due, 1)
else:
card.due = due
mw.col.update_card(card)
def get_revlogs(cid: int):
if int_version() >= 241000:
return mw.col.get_review_logs(cid)
else:
return mw.col.card_stats_data(cid).revlog
def filter_revlogs(
revlogs: List[CardStatsResponse.StatsRevlogEntry],
) -> List[CardStatsResponse.StatsRevlogEntry]:
return list(
filter(
lambda x: x.button_chosen >= 1
and (x.review_kind != REVLOG_CRAM or x.ease != 0),
revlogs,
)
)
def get_last_review_date(card: Card):
revlogs = get_revlogs(card.id)
try:
last_revlog = filter_revlogs(revlogs)[0]
last_review_date = (
math.ceil((last_revlog.time - mw.col.sched.day_cutoff) / 86400)
+ mw.col.sched.today
)
except IndexError:
due = card.odue if card.odid else card.due
last_review_date = due - card.ivl
return last_review_date
def update_card_due_ivl(card: Card, new_ivl: int):
card.ivl = new_ivl
last_review_date = get_last_review_date(card)
if card.odid:
card.odue = max(last_review_date + new_ivl, 1)
else:
card.due = last_review_date + new_ivl
return card
def has_again(revlogs: List[CardStatsResponse.StatsRevlogEntry]):
for r in revlogs:
if r.button_chosen == 1:
return True
return False
def has_manual_reset(revlogs: List[CardStatsResponse.StatsRevlogEntry]):
last_kind = None
for r in revlogs:
if r.button_chosen == 0:
return True
if (
last_kind is not None
and last_kind in (REVLOG_REV, REVLOG_RELRN)
and r.review_kind == REVLOG_LRN
):
return True
last_kind = r.review_kind
return False
FUZZ_RANGES = [
{
"start": 2.5,
"end": 7.0,
"factor": 0.15,
},
{
"start": 7.0,
"end": 20.0,
"factor": 0.1,
},
{
"start": 20.0,
"end": math.inf,
"factor": 0.05,
},
]
def get_fuzz_range(interval, elapsed_days, maximum_interval):
delta = 1.0
for range in FUZZ_RANGES:
delta += range["factor"] * max(
min(interval, range["end"]) - range["start"], 0.0
)
interval = min(interval, maximum_interval)
min_ivl = int(round(interval - delta))
max_ivl = int(round(interval + delta))
min_ivl = max(2, min_ivl)
max_ivl = min(max_ivl, maximum_interval)
if interval > elapsed_days:
min_ivl = max(min_ivl, elapsed_days + 1)
min_ivl = min(min_ivl, max_ivl)
return min_ivl, max_ivl
def due_to_date_str(due: int) -> str:
offset = due - mw.col.sched.today
today_date = sched_current_date()
return (today_date + timedelta(days=offset)).strftime("%Y-%m-%d")
def sched_current_date() -> date:
now = datetime.now()
next_day_start_at = mw.col.get_config("rollover")
return (now - timedelta(hours=next_day_start_at)).date()
if int_version() < 231200:
DECAY = -1
else:
DECAY = -0.5 # FSRS-4.5
FACTOR = 0.9 ** (1 / DECAY) - 1
def power_forgetting_curve(t, s):
return (1 + FACTOR * t / s) ** DECAY
def next_interval(s, r):
ivl = s / FACTOR * (r ** (1 / DECAY) - 1)
return max(1, int(round(ivl)))
def write_custom_data(card: Card, key, value):
if card.custom_data != "":
custom_data = json.loads(card.custom_data)
custom_data[key] = value
else:
custom_data = {key: value}
card.custom_data = json.dumps(custom_data)
def rotate_number_by_k(N, K):
num = str(N)
length = len(num)
K = K % length
rotated = num[K:] + num[:K]
return int(rotated)
def p_obey_easy_days(num_of_easy_days, easy_days_review_ratio):
"""
Calculate the probability of obeying easy days to ensure the review ratio.
Parameters:
- num_of_easy_days: the number of easy days
- easy_days_review_ratio: the ratio of reviews on easy days
Math:
- A week has 7 days, n easy days, 7 - n non-easy days
- Assume we have y reviews per non-easy day, the number of reviews per easy day is a * y
- The total number of reviews in a week is y * (7 - n) + a * y * n
- The probability of a review on an easy day is the number of reviews on easy days divided by the total number of reviews
- (a * y * n) / (y * (7 - n) + a * y * n) = (a * n) / (a * n + 7 - n)
- The probability of skipping a review on an easy day is 1 - (a * n) / (a * n + 7 - n) = (7 - n) / (a * n + 7 - n)
"""
return (7 - num_of_easy_days) / (
easy_days_review_ratio * num_of_easy_days + 7 - num_of_easy_days
)
def p_obey_specific_due_dates(num_of_specific_due_dates, easy_days_review_ratio):
"""
Calculate the probability of obeying specific due dates to ensure the review ratio.
Parameters:
- num_of_specific_due_dates: the number of specific due dates
- easy_days_review_ratio: the ratio of reviews on easy days
Math:
- When we have n specific due dates, the number of days to reschedule is 8 + n
- Assume we have y reviews per non-easy day, the number of reviews per easy day is a * y
- The total number of reviews in the days to reschedule is y * 8 + a * y * n
- The probability of a review on a specific due date is the number of reviews on specific due dates divided by the total number of reviews
- (a * y * n) / (y * 8 + a * y * n) = (a * n) / (a * n + 8)
- The probability of skipping a review on a specific due date is 1 - (a * n) / (a * n + 8) = 8 / (a * n + 8)
"""
return 8 / (easy_days_review_ratio * num_of_specific_due_dates + 8)
def col_set_modified():
mw.col.db.execute(f"UPDATE col set mod = {int(time.time() * 1000)}")
def ask_one_way_sync():
return askUser(
"The requested change will require a one-way sync. If you have made changes on another device, "
+ "and not synced them to this device yet, please do so before you proceed.\n"
+ "Do you want to proceed?"
)
def format_time(x, pos=None):
if x < 60:
return f"{x:.0f}s"
elif x < 3600:
return f"{x/60:.2f}m"
elif x < 86400:
return f"{x/3600:.2f}h"
else:
return f"{x/86400:.2f}d"