-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
127 lines (96 loc) · 4.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
parser = argparse.ArgumentParser()
add_arg = parser.add_argument
add_arg('--model' , default='default' , type=str , \
help='Name of the model to be trained.')
add_arg('--batch-size', default=16 , type=int , \
help='Number of images provided at each training iteration.')
add_arg('--lr-gen' , default=1e-4 , type=float, \
help='Learning rate of generative network.')
add_arg('--lr-dis' , default=1e-4 , type=float, \
help='Learning rate of discriminative network.')
add_arg('--epochs' , default=5 , type=int , \
help='Number of training epochs.')
add_arg('--disp-every', default=10 , type=int , \
help='Display costs per each disp_every iterations.')
add_arg('--save-every', default=None , type=int , \
help='Save model per each save_every epochs.')
add_arg('--npy-path' , default='data/train.npy', type=str , \
help='Path to numpy array containing training set images.')
add_arg('--continues' , default=0 , type=int , \
help='If set to 1, continue to train the specified model. \
If set to 0, a new model with specified name will be generated.')
args = parser.parse_args()
from numpy import array, load
from os import makedirs
from os.path import exists
from scipy.misc import imresize
from commons import discriminator
from commons import generator
from commons import costs_and_vars
from commons import BatchGenerator
import tensorflow as tf
class Trainer:
def __init__(self):
print('Importing training set ...')
self.dataset = load(file=args.npy_path, allow_pickle=False)
print('Done.')
self.batch_size = args.batch_size
self.training_epochs = args.epochs
self.model = args.model
self.display_step = args.disp_every
self.save_step = args.save_every
self.lr_gen = args.lr_gen
self.lr_dis = args.lr_dis
self.continues = args.continues
self.dataset_size = self.dataset.shape[0]
def train(self):
big_x = tf.placeholder(tf.float32, [None, 128, 128, 3])
sml_x = tf.placeholder(tf.float32, [None, 64, 64, 3])
gener_x = generator(sml_x, is_training=True, reuse=False)
real_d = discriminator(big_x, is_training=True, reuse=False)
gener_d = discriminator(gener_x, is_training=True, reuse=True)
g_cost, d_cost, g_vars, d_vars = \
costs_and_vars(big_x, gener_x, real_d, gener_d, is_training=True)
g_optimizer = tf.train.AdamOptimizer(learning_rate=self.lr_gen).\
minimize(g_cost, var_list=g_vars)
d_optimizer = tf.train.AdamOptimizer(learning_rate=self.lr_dis).\
minimize(d_cost, var_list=d_vars)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
saver = tf.train.Saver()
if self.continues:
try:
saver.restore(sess, '/'.join(['models', self.model, self.model]))
except:
print('Model coult not be restored. Exiting.')
exit()
if not exists('models'):
makedirs('models')
passed_iters = 0
for epoch in range(1, self.training_epochs+1):
print('Epoch:', str(epoch))
for batch in BatchGenerator(self.batch_size, self.dataset_size):
batch_big = self.dataset[batch] / 255.0
batch_sml = array([imresize(img, size=(64, 64, 3)) \
for img in batch_big])
_, gc, dc = sess.run([g_optimizer, g_cost, d_cost], \
feed_dict={big_x : batch_big, sml_x : batch_sml})
sess.run([d_optimizer], \
feed_dict={big_x : batch_big, sml_x : batch_sml})
passed_iters += 1
if passed_iters % self.display_step == 0:
print('Passed iterations=%d, Generative cost=%.9f, Discriminative cost=%.9f' %\
(passed_iters, gc, dc))
if self.save_step and epoch % self.save_step == 0:
saver.save(sess, '/'.join(['models', self.model, self.model]))
print('Model \'%s\' saved in: \'%s/\'' \
% (self.model, '/'.join(['models', self.model])))
print('Optimization finished.')
saver.save(sess, '/'.join(['models', self.model, self.model]))
print('Model \'%s\' saved in: \'%s/\'' \
% (self.model, '/'.join(['models', self.model])))
if __name__ == '__main__':
trainer = Trainer()
trainer.train()