forked from bingykang/Fewshot_Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
valid_meta.py
executable file
·149 lines (128 loc) · 4.75 KB
/
valid_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from darknet_meta import Darknet
import dataset
import torch
from torch.autograd import Variable
from torchvision import datasets, transforms
from utils import *
from cfg import cfg
from cfg import parse_cfg
import os
import pdb
def valid(datacfg, darknetcfg, learnetcfg, weightfile, outfile):
options = read_data_cfg(datacfg)
valid_images = options['valid']
metadict = options['meta']
# name_list = options['names']
# backup = cfg.backup
ckpt = weightfile.split('/')[-1].split('.')[0]
backup = weightfile.split('/')[-2]
prefix = 'results/' + backup.split('/')[-1] + '/e' + ckpt
print('saving to: ' + prefix)
# prefix = 'results/' + weightfile.split('/')[1]
# names = load_class_names(name_list)
with open(valid_images) as fp:
tmp_files = fp.readlines()
valid_files = [item.rstrip() for item in tmp_files]
m = Darknet(darknetcfg, learnetcfg)
m.print_network()
m.load_weights(weightfile)
m.cuda()
m.eval()
valid_dataset = dataset.listDataset(valid_images, shape=(m.width, m.height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]))
valid_batchsize = 2
assert(valid_batchsize > 1)
kwargs = {'num_workers': 4, 'pin_memory': True}
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=valid_batchsize, shuffle=False, **kwargs)
metaset = dataset.MetaDataset(metafiles=metadict, train=False)
metaloader = torch.utils.data.DataLoader(
metaset,
batch_size=metaset.batch_size,
shuffle=False,
**kwargs
)
metaloader = iter(metaloader)
n_cls = len(metaset.classes)
if not os.path.exists(prefix):
# os.mkdir(prefix)
os.makedirs(prefix)
fps = [0]*n_cls
for i, cls_name in enumerate(metaset.classes):
buf = '%s/%s%s.txt' % (prefix, outfile, cls_name)
fps[i] = open(buf, 'w')
lineId = -1
conf_thresh = 0.005
nms_thresh = 0.45
for batch_idx, (data, target) in enumerate(valid_loader):
metax, mask = metaloader.next()
# print(ids)
data = data.cuda()
mask = mask.cuda()
metax = metax.cuda()
data = Variable(data, volatile = True)
mask = Variable(mask, volatile = True)
metax = Variable(metax, volatile = True)
output = m(data, metax, mask)
if isinstance(output, tuple):
output = (output[0].data, output[1].data)
else:
output = output.data
batch_boxes = get_region_boxes_v2(output, n_cls, conf_thresh, m.num_classes, m.anchors, m.num_anchors, 0, 1)
if isinstance(output, tuple):
bs = output[0].size(0)
else:
assert output.size(0) % n_cls == 0
bs = output.size(0) // n_cls
for b in range(bs):
lineId = lineId + 1
imgpath = valid_dataset.lines[lineId].rstrip()
print(imgpath)
imgid = os.path.basename(imgpath).split('.')[0]
width, height = get_image_size(imgpath)
for i in range(n_cls):
# oi = i * bs + b
oi = b * n_cls + i
boxes = batch_boxes[oi]
boxes = nms(boxes, nms_thresh)
for box in boxes:
x1 = (box[0] - box[2]/2.0) * width
y1 = (box[1] - box[3]/2.0) * height
x2 = (box[0] + box[2]/2.0) * width
y2 = (box[1] + box[3]/2.0) * height
det_conf = box[4]
for j in range((len(box)-5)/2):
cls_conf = box[5+2*j]
cls_id = box[6+2*j]
prob =det_conf * cls_conf
fps[i].write('%s %f %f %f %f %f\n' % (imgid, prob, x1, y1, x2, y2))
for i in range(n_cls):
fps[i].close()
if __name__ == '__main__':
import sys
if len(sys.argv) == 5 or len(sys.argv) == 6:
datacfg = sys.argv[1]
darknet = parse_cfg(sys.argv[2])
learnet = parse_cfg(sys.argv[3])
weightfile = sys.argv[4]
if len(sys.argv) == 6:
gpu = sys.argv[5]
else:
gpu = '0'
data_options = read_data_cfg(datacfg)
net_options = darknet[0]
meta_options = learnet[0]
data_options['gpus'] = gpu
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
# Configure options
cfg.config_data(data_options)
cfg.config_meta(meta_options)
cfg.config_net(net_options)
outfile = 'comp4_det_test_'
valid(datacfg, darknet, learnet, weightfile, outfile)
else:
print('Usage:')
print(' python valid.py datacfg cfgfile weightfile')