-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathravev_function.py
125 lines (96 loc) · 4.37 KB
/
ravev_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
from __future__ import print_function
import roslib
import sys, time
import rospy
import cv2
import message_filters
import numpy as np
from matplotlib import pyplot as plt
from message_filters import ApproximateTimeSynchronizer, TimeSynchronizer, Subscriber
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError
from darknet_ros_msgs.msg import BoundingBoxes
bridge = CvBridge()
fgbg = cv2.createBackgroundSubtractorMOG2()
image_pub = rospy.Publisher('ROI_image', Image, queue_size=10)
i=0
class ravev(object):
def __init__(self, image, x_min , x_max, y_min, y_max, det_class, det_id, var):
super(ravev, self).__init__()
self.i=0
self.obj_type = None
def recognize(self, cv_image, x_min, x_max, y_min, y_max, det_class, det_id, var):
roi_bgr=cv_image[y_min:y_max , x_min:x_max]
fgmask = fgbg.apply(roi_bgr)[1]
self.i=self.i+1
# Convert BGR to HSV
roi_hsv = cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV)
# cv2.namedWindow("ROI_BGR", cv2.WINDOW_NORMAL)
# cv2.imshow("ROI_BGR", roi_bgr)
# cv2.waitKey(1)
# cv2.namedWindow("ROI_HSV", cv2.WINDOW_NORMAL)
# cv2.imshow("ROI_HSV", roi_hsv)
# cv2.waitKey(1)
##Object-Tracking
# define range of blue color in HSV
lower_blue_hsv = np.array([110,50,50])
upper_blue_hsv = np.array([130,255,255])
lower_red_hsv = np.array([0,50,50])
upper_red_hsv = np.array([10,255,255])
# Threshold the HSV image to get only blue colors
mask_blue_hsv = cv2.inRange(roi_hsv, lower_blue_hsv, upper_blue_hsv)
mask_red_hsv = cv2.inRange(roi_hsv, lower_red_hsv, upper_red_hsv)
thresh_mask_blue_hsv = cv2.threshold(mask_blue_hsv, 200, 255, cv2.THRESH_BINARY)[1]
thresh_mask_blue_hsv = cv2.erode(thresh_mask_blue_hsv, None, iterations=4)
thresh_mask_blue_hsv = cv2.dilate(thresh_mask_blue_hsv, None, iterations=8)
# thresh_mask_red_hsv = cv2.threshold(mask_red_hsv, 200, 255, cv2.THRESH_BINARY)[1]
# thresh_mask_red_hsv = cv2.erode(thresh_mask_red_hsv, None, iterations=4)
# thresh_mask_red_hsv = cv2.dilate(thresh_mask_red_hsv, None, iterations=8)
# Bitwise-AND mask and original image
result_blue_hsv = cv2.bitwise_and(roi_bgr,roi_bgr, mask= thresh_mask_blue_hsv)
result_red_hsv = cv2.bitwise_and(roi_bgr,roi_bgr, mask= mask_red_hsv)
#result_bbg_hsv = cv2.bitwise_and(roi_bgr,roi_bgr, mask= fgmask)
im2,contours_blue,hierarchy = cv2.findContours(thresh_mask_blue_hsv, 1, 2)
cv2.drawContours(result_blue_hsv, contours_blue, -1, (0,255,0), 3)
im2,contours_red,hierarchy = cv2.findContours(mask_red_hsv, 1, 2)
cv2.drawContours(result_red_hsv, contours_red, -1, (0,255,0), 3)
if len(contours_blue) > 1:
c_blue = contours_blue[0]
area_blue = cv2.contourArea(c_blue)
else:
area_blue = 0
if len(contours_red) > 1:
c_red = contours_red[0]
area_red = cv2.contourArea(c_red)
else:
area_red = 0
# print (area_blue, area_red)
# mask_hstack_hsv = np.hstack((mask_red_hsv, mask_blue_hsv)) #Stack cv windows horizontally
# result_hstack_hsv = np.hstack((result_red_hsv, result_blue_hsv)) #Stack cv windows horizontally
# cv2.namedWindow("MASK_RED_BLUE", cv2.WINDOW_NORMAL)
# cv2.imshow('MASK_RED_BLUE',mask_hstack_hsv)
# cv2.namedWindow("RES_RED_BLUE", cv2.WINDOW_NORMAL)
# cv2.imshow('RES_RED_BLUE',result_hstack_hsv)
# plt.subplot(2,1,1)
# plt.ylim(0, 2000)
# plt.autoscale(False, axis='y')
# plt.plot(i, area_blue, '.-', color = 'blue')
# plt.subplot(2,1,2)
# plt.ylim(0, 50)
# plt.autoscale(False, axis='y')
# plt.plot(i, area_red, '.-', color = 'red')
# plt.pause(0.0001)
# cv2.namedWindow("ROI", cv2.WINDOW_NORMAL)
# cv2.imshow("ROI", roi_bgr)
# cv2.waitKey(1)
if area_blue>1000 or area_red>=10:
obj_type = "EV"
else:
obj_type = det_class
#image_pub.publish(bridge.cv2_to_imgmsg(cv_image[y_min:y_max , x_min:x_max], "bgr8"))
return(obj_type, area_blue, area_red)
def main():
node = ravev()
if __name__ == '__main__':
main()