-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlog
329 lines (288 loc) · 11.8 KB
/
log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#data points: 6808
epoch #0
val loss : 7.807570, val predict = 0.0%
train loss : 7.871518, train predict = 0.0%
train sample
庭前春晓雄鸡舞___(世上风清燕子飞___) -> __________
test sample
艺苑百花俏_____(文坛万象新_____) -> 雾_________
epoch #1
val loss : 4.393657, val predict = 0.0%
train loss : 4.531971, train predict = 0.0%
train sample
弧帨同悬葵心向日__(椿萱并茂婪尾留春__) -> 春花春万万万春春__
test sample
风竹引天乐_____(林亭聚地灵_____) -> 春春春春______
epoch #2
val loss : 4.506798, val predict = 0.0%
train loss : 4.341106, train predict = 0.0%
train sample
夫妻似胶漆恩恩爱爱_(光景如榴花火火红红_) -> 春花春春万万万春春_
test sample
碧海苍山玉宇____(春风丽日神州____) -> 春花春万春春____
epoch #3
val loss : 4.501491, val predict = 0.0%
train loss : 4.286062, train predict = 0.0%
train sample
诗画满园铺锦绣___(风雷动地走龙蛇___) -> 春花人有万长春___
test sample
经济医时昭一代___(功名寿世足千秋___) -> 春风春风万春春___
epoch #4
val loss : 4.506361, val predict = 0.0%
train loss : 4.333735, train predict = 0.0%
train sample
猴捧仙桃国安人寿__(羊衔嘉穗物阜年丰__) -> 春年春年万报新春__
test sample
回溯前尘情同骨肉__(追怀往事痛断肝肠__) -> 春年春开万报新春__
epoch #5
val loss : 4.126064, val predict = 0.0%
train loss : 3.804401, train predict = 0.0%
train sample
军民团结如一人___(试看天下谁能敌___) -> 无前有月祝长春___
test sample
同行顿失慈容劳想像_(教诲缅怀懿训寄悲哀_) -> 无公有,,寿有长心_
epoch #6
val loss : 4.499676, val predict = 0.0%
train loss : 3.726012, train predict = 0.0%
train sample
试看题字疑为凤___(敢道登门便是龙___) -> 人花花月有长人___
test sample
暮日欣交贴心伴___(余生乐度幸福秋___) -> 春花花月月长春___
epoch #7
val loss : 4.752257, val predict = 0.0%
train loss : 3.583410, train predict = 0.0%
train sample
多种经营四路进宝__(全面发展八方生财__) -> 椿风益寿万代长春__
test sample
椿萱并茂______(庚婺同明______) -> 人月长春______
epoch #8
val loss : 3.936577, val predict = 0.0%
train loss : 3.469203, train predict = 0.0%
train sample
桃李齐开春正好___(屋堂合曜寿无疆___) -> 人前有月不无圆___
test sample
雨润萱花添秀色___(风和兰竹报平安___) -> 春花花月月双飞___
epoch #9
val loss : 4.597619, val predict = 0.0%
train loss : 3.597021, train predict = 0.0%
train sample
行可楷模年称德___(老夫松柏岁长春___) -> 无爱无亲一千香___
test sample
千秋业绩______(一代风流______) -> 四海春丰______
epoch #10
val loss : 4.099648, val predict = 0.0%
train loss : 3.489463, train predict = 0.0%
train sample
枝头喜鹊言春早___(院里金鸡报岁新___) -> 春马春春报福春___
test sample
膝下承欢未尽意___(床前伺奉尚余心___) -> 情前有子自人心___
epoch #11
val loss : 3.867900, val predict = 0.0%
train loss : 3.565973, train predict = 0.0%
train sample
花容羞月色_____(秋夜作春宵_____) -> 春山月月香_____
test sample
夕阳无限光景美___(萱草有根晚花香___) -> 春风日喜喜双飞___
epoch #12
val loss : 4.487029, val predict = 0.0%
train loss : 3.027531, train predict = 0.0%
train sample
春满柜台五光十色__(货盈橱架万紫千红__) -> 春风绿上万海新春__
test sample
主欢客乐______(近悦远来______) -> 德德常通______
epoch #13
val loss : 4.382755, val predict = 0.0%
train loss : 3.084887, train predict = 0.0%
train sample
碧桃无意随春水___(黄犊有情鼓绿涛___) -> 春花得日玉阳春___
test sample
满座嘉宾漾喜气___(声声花炮迎新人___) -> 金风喜舞报春风___
epoch #14
val loss : 4.189896, val predict = 0.0%
train loss : 2.891950, train predict = 0.0%
train sample
人增高寿______(天转阳和______) -> 天气常辉______
test sample
送酒刚送开径后___(调羹时值授衣时___) -> 莫闻何始赤子心___
epoch #15
val loss : 4.524174, val predict = 0.0%
train loss : 2.828444, train predict = 0.0%
train sample
萱草含芳千岁艳___(桂花香动五株新___) -> 花树花开百岁芝___
test sample
倚栏芍药艳_____(并蒂蔷薇香_____) -> 同同人上诗_____
epoch #16
val loss : 4.517746, val predict = 0.0%
train loss : 2.377018, train predict = 3.3%
train sample
牛肥马壮辞牛岁___(虎跃龙腾迎虎年___) -> 燕语春春幸福春___
test sample
金鸡歌国泰_____(义犬报民安_____) -> 玉燕报春风_____
epoch #17
val loss : 4.653554, val predict = 0.0%
train loss : 2.656518, train predict = 0.0%
train sample
门书喜字乾坤乐___(户进新人岁月甜___) -> 大日春风万象新___
test sample
千顷金涛迎喜至___(一枝红杏入墙来___) -> 万里龙飞报早春___
epoch #18
val loss : 4.086710, val predict = 0.0%
train loss : 2.398966, train predict = 0.0%
train sample
好女娶夫破旧俗___(英男落户树新风___) -> 大地长开万象新___
test sample
吉日花开梅并蒂___(良宵家庆月双圆___) -> 春风焕月映慈圆___
epoch #19
val loss : 3.813875, val predict = 0.0%
train loss : 2.310621, train predict = 0.0%
train sample
银镜台前人似玉___(茜纱窗下语如诗___) -> 玉露芝田梦夜圆___
test sample
龙去神威在_____(蛇来紫气生_____) -> 兔迎喜气浓_____
epoch #20
val loss : 4.057551, val predict = 0.0%
train loss : 2.415551, train predict = 0.0%
train sample
碧野千重铺锦绣___(金鸡一曲唱丰收___) -> 金鸡万马奔腾飞___
test sample
纳杏在林时维二月__(紫芝纪算数合九畴__) -> 鹤筹添寿五祝三秋__
epoch #21
val loss : 3.972025, val predict = 0.0%
train loss : 2.313770, train predict = 0.0%
train sample
竹径有时风为扫___(此门无事日常关___) -> 此人无亲德有多___
test sample
挥笔龙蛇走_____(迎春莺燕歌_____) -> 举兔报春来_____
epoch #22
val loss : 4.875242, val predict = 0.0%
train loss : 1.937594, train predict = 3.3%
train sample
推崇科学笑迎百花艳_(倡导文明喜看万象新_) -> 倡导高明开万代迎春_
test sample
诗无流俗形声正___(字不矜张结构安___) -> 莫闻何悟自无穷___
epoch #23
val loss : 4.381342, val predict = 0.0%
train loss : 1.986340, train predict = 3.3%
train sample
庭余安乐福_____(门掩太平居_____) -> 大气焕新春_____
test sample
英雄门第______(革命人家______) -> 钢国长庭______
epoch #24
val loss : 4.332813, val predict = 0.0%
train loss : 2.129490, train predict = 0.0%
train sample
开上寿初筵九十曰耄_(乐余年安康八千为秋_) -> 良孙百世四化代千秋_
test sample
爱党心诚葵向日___(孚民德重凤朝阳___) -> 精国人家自厦才___
epoch #25
val loss : 4.522930, val predict = 0.0%
train loss : 1.785934, train predict = 3.3%
train sample
伏枥犹存千里志___(添翼更上九重天___) -> 芳流万树九边天___
test sample
花开天下福_____(马跃人间春_____) -> 人暖月乾坤_____
epoch #26
val loss : 4.002631, val predict = 0.0%
train loss : 1.657120, train predict = 3.3%
train sample
足征盛德如公寿可必得(若说不才像舅我何敢当) -> 若说说实像舅舅我何何
test sample
念祖母毕生操劳伤罔报(教孙曹终天抱恨痛难忘) -> 叹哉辈辈强强国里长生
epoch #27
val loss : 4.513371, val predict = 0.0%
train loss : 1.852594, train predict = 3.3%
train sample
香山梅鹤饶清福___(宅地神仙占大春___) -> 喜气春风入吉祥___
test sample
春露秋霜连广宇___(羊肠鸟道变通途___) -> 春风翠柳映翠堂___
epoch #28
val loss : 4.334445, val predict = 0.0%
train loss : 1.671215, train predict = 0.0%
train sample
虎啸一声山海动___(龙腾三界吉祥来___) -> 兔年万象展丰年___
test sample
兰室犹然仍旧址___(槐堂又喜庆新居___) -> 琴瑟合曜寿无疆___
epoch #29
val loss : 5.485227, val predict = 0.0%
train loss : 1.720591, train predict = 6.7%
train sample
志大年高一腔热血__(童颜鹤发满面春风__) -> 童颜鹤发百世长生__
test sample
新开周岁蹒珊步___(初启此生浩荡云___) -> 新风喜宇着冲云___
epoch #30
val loss : 4.132557, val predict = 0.0%
train loss : 1.392887, train predict = 13.3%
train sample
柳树花明春正好___(珠联璧合影成双___) -> 花联璧梦结同心___
test sample
温公正人耆英会___(马氏咸称矍铄翁___) -> 誓爱应命尽英雄___
epoch #31
val loss : 5.011171, val predict = 0.0%
train loss : 1.720337, train predict = 0.0%
train sample
酒泛金樽以介眉寿__(花开琼岛有婪尾春__) -> 花田宝婺彩映林辰__
test sample
日煦萱花云征异彩__(天留婺宿人庆百年__) -> 花投日彩瑞庆双堂__
epoch #32
val loss : 4.349203, val predict = 0.0%
train loss : 1.466422, train predict = 6.7%
train sample
壮志结成四化果___(红心顶起半边天___) -> 英心顶出百家多___
test sample
新春玉犬门前卧___(华夏金龙天外飞___) -> 大地嗣蹄起翠眉___
epoch #33
val loss : 4.860750, val predict = 0.0%
train loss : 1.323280, train predict = 6.7%
train sample
三春景好闻鸡先起舞_(两岸情深盼燕早归来_) -> 四岸同开喜燕早腾飞_
test sample
万里风云骐骥足___(百年珠树凤凰多___) -> 一堂春雨映云云___
epoch #34
val loss : 5.186878, val predict = 0.0%
train loss : 1.385919, train predict = 3.3%
train sample
山蛇起舞云行雨___(喜鹊争鸣雪点梅___) -> 骏马登飞报好音___
test sample
云山风度______(松柏气节______) -> 喜气啼薰______
epoch #35
val loss : 4.875988, val predict = 0.0%
train loss : 1.218386, train predict = 3.3%
train sample
百族有方致富日___(三军无敌国强时___) -> 百代勤劳有康心___
test sample
当谢高朋来贺寿___(更欣愚子既完婚___) -> 与国留存赤子心___
epoch #36
val loss : 4.885123, val predict = 0.0%
train loss : 1.166628, train predict = 10.0%
train sample
白发朱颜宜登上寿__(丰衣足食乐享高龄__) -> 丰衣足食乐享晚年__
test sample
枝生玉殿美连理___(花满瑶池艳并头___) -> 门前日月映云风___
epoch #37
val loss : 3.993980, val predict = 0.0%
train loss : 1.051680, train predict = 20.0%
train sample
可染画牛牛得草___(悲鸿放马马扬鞭___) -> 宜鸿见喜吉盈门___
test sample
日丽新居暖_____(风和甲第安_____) -> 人开幸福家_____
epoch #38
val loss : 4.765527, val predict = 0.0%
train loss : 1.083805, train predict = 10.0%
train sample
子夜为鼠______(丑时属牛______) -> 丑年属牛______
test sample
欣看晋殿乘龙婿___(喜听秦楼引凤箫___) -> 鸟锁丹花贯上云___
epoch #39
val loss : 4.852129, val predict = 3.3%
train loss : 1.046198, train predict = 6.7%
train sample
一夜秋风狂摧祖竹__(三更凉露泪洒孙兰__) -> 一孪凉秀泪洒东歌__
test sample
马蹄留胜迹_____(羊毫谱新歌_____) -> 羊角触雄梅_____
epoch #40
val loss : 4.239096, val predict = 0.0%
train loss : 1.060250, train predict = 16.7%
train sample
心贴人民军威壮___(胸怀祖国胆气豪___) -> 胸怀祖国胆气豪___
test sample
玉燕迎春春永驻___(金猴降福福常存___) -> 金鸡奋唱国扬煌___