-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
34 lines (31 loc) · 1.17 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from cProfile import label
import matplotlib
import torch
from torch import nn
from torch.utils.data import Dataset
import matplotlib.pyplot as plt
matplotlib.use("Qt5Agg")
import matplotlib
@torch.no_grad()
def classifier_plot(model: nn.Module, dataset: Dataset):
data = torch.vstack([x for x, label in dataset])
xmax = data[:,0].amax()
ymax = data[:,1].amax()
xmin = data[:,0].amin()
ymin = data[:,1].amin()
labels = torch.vstack([label for x, label in dataset])
set1_ind = torch.where(labels.flatten() == 1)[0]
set0_ind = torch.where(labels.flatten() == 0)[0]
x, y = torch.meshgrid(torch.linspace(xmin, xmax, 100), torch.linspace(ymin, ymax, 100), indexing='xy')
model_in: torch.Tensor = torch.stack((x.flatten(), y.flatten()), dim=1)
pred: torch.Tensor = model(model_in)
pred = pred.reshape(100, 100)
fig = plt.figure()
im = plt.imshow(pred, cmap='viridis', extent=(xmin, xmax, ymax, ymin))
ax = plt.gca()
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
plt.scatter(data[set1_ind,0], data[set1_ind,1], color='red')
plt.scatter(data[set0_ind,0], data[set0_ind,1], color='blue')
plt.colorbar()
return fig