forked from PufferAI/PufferLib
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
294 lines (262 loc) · 11.8 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from pdb import set_trace as T
import functools
import argparse
import shutil
import yaml
import uuid
import sys
import os
import pufferlib
import pufferlib.utils
import pufferlib.vector
import pufferlib.frameworks.cleanrl
from rich_argparse import RichHelpFormatter
from rich.traceback import install
from rich.console import Console
import clean_pufferl
def load_config(parser, config_path='config.yaml'):
'''Just a fancy config loader. Populates argparse from
yaml + env/policy fn signatures to give you a nice
--help menu + some limited validation of the config'''
args, _ = parser.parse_known_args()
env_name, pkg_name = args.env, args.pkg
with open(config_path) as f:
config = yaml.safe_load(f)
if 'default' not in config:
raise ValueError('Deleted default config section?')
if env_name not in config:
raise ValueError(f'{env_name} not in config\n'
'It might be available through a parent package, e.g.\n'
'--config atari --env MontezumasRevengeNoFrameskip-v4.')
default = config['default']
env_config = config[env_name or pkg_name]
pkg_name = pkg_name or env_config.get('package', env_name)
pkg_config = config[pkg_name]
# TODO: Check if actually installed
env_module = pufferlib.utils.install_and_import(
f'pufferlib.environments.{pkg_name}')
make_name = env_config.get('env_name', None)
make_env_args = [make_name] if make_name else []
make_env = env_module.env_creator(*make_env_args)
make_env_args = pufferlib.utils.get_init_args(make_env)
policy_args = pufferlib.utils.get_init_args(env_module.Policy)
rnn_args = pufferlib.utils.get_init_args(env_module.Recurrent)
fn_sig = dict(env=make_env_args, policy=policy_args, rnn=rnn_args)
config = vars(parser.parse_known_args()[0])
valid_keys = 'env policy rnn train sweep'.split()
for key in valid_keys:
fn_subconfig = fn_sig.get(key, {})
env_subconfig = env_config.get(key, {})
pkg_subconfig = pkg_config.get(key, {})
# Priority env->pkg->default->fn config
config[key] = {**fn_subconfig, **default[key],
**pkg_subconfig, **env_subconfig}
for name in valid_keys:
sub_config = config[name]
for key, value in sub_config.items():
data_key = f'{name}.{key}'
cli_key = f'--{data_key}'.replace('_', '-')
if isinstance(value, bool) and value is False:
parser.add_argument(cli_key, default=value, action='store_true')
elif isinstance(value, bool) and value is True:
data_key = f'{name}.no_{key}'
cli_key = f'--{data_key}'.replace('_', '-')
parser.add_argument(cli_key, default=value, action='store_false')
else:
parser.add_argument(cli_key, default=value, type=type(value))
config[name][key] = getattr(parser.parse_known_args()[0], data_key)
config[name] = pufferlib.namespace(**config[name])
pufferlib.utils.validate_args(make_env.func if isinstance(make_env, functools.partial) else make_env, config['env'])
pufferlib.utils.validate_args(env_module.Policy, config['policy'])
if 'use_rnn' in env_config:
config['use_rnn'] = env_config['use_rnn']
elif 'use_rnn' in pkg_config:
config['use_rnn'] = pkg_config['use_rnn']
else:
config['use_rnn'] = default['use_rnn']
parser.add_argument('--use_rnn', default=False, action='store_true',
help='Wrap policy with an RNN')
config['use_rnn'] = config['use_rnn'] or parser.parse_known_args()[0].use_rnn
parser.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS, help='show this help message and exit')
parser.parse_args()
wandb_name = make_name or env_name
config['env_name'] = env_name
config['resume'] = args.exp_id is not None
config['exp_id'] = args.exp_id or args.env + '-' + str(uuid.uuid4())[:8]
return wandb_name, pkg_name, pufferlib.namespace(**config), env_module, make_env, make_policy
def make_policy(env, env_module, args):
policy = env_module.Policy(env, **args.policy)
if args.use_rnn:
policy = env_module.Recurrent(env, policy, **args.rnn)
policy = pufferlib.frameworks.cleanrl.RecurrentPolicy(policy)
else:
policy = pufferlib.frameworks.cleanrl.Policy(policy)
return policy.to(args.train.device)
def init_wandb(args, name, id=None, resume=True):
#os.environ["WANDB_SILENT"] = "true"
import wandb
wandb.init(
id=id or wandb.util.generate_id(),
project=args.wandb_project,
entity=args.wandb_entity,
group=args.wandb_group,
config={
'cleanrl': dict(args.train),
'env': dict(args.env),
'policy': dict(args.policy),
#'recurrent': args.recurrent,
},
name=name,
monitor_gym=True,
save_code=True,
resume=resume,
)
return wandb
def sweep(args, wandb_name, env_module, make_env):
import wandb
sweep_id = wandb.sweep(
sweep=dict(args.sweep),
project="pufferlib",
)
def main():
try:
args.exp_name = init_wandb(args, wandb_name, id=args.exp_id)
# TODO: Add update method to namespace
print(wandb.config.train)
args.train.__dict__.update(dict(wandb.config.train))
args.track = True
train(args, env_module, make_env)
except Exception as e:
import traceback
traceback.print_exc()
wandb.agent(sweep_id, main, count=100)
def train(args, env_module, make_env):
args.wandb = None
args.train.exp_id = args.exp_id
if args.track:
args.wandb = init_wandb(args, wandb_name, id=args.exp_id)
vec = args.vec
if vec == 'serial':
vec = pufferlib.vector.Serial
elif vec == 'multiprocessing':
vec = pufferlib.vector.Multiprocessing
elif vec == 'ray':
vec = pufferlib.vector.Ray
else:
raise ValueError(f'Invalid --vector (serial/multiprocessing/ray).')
vecenv = pufferlib.vector.make(
make_env,
env_kwargs=args.env,
num_envs=args.train.num_envs,
num_workers=args.train.num_workers,
batch_size=args.train.env_batch_size,
zero_copy=args.train.zero_copy,
backend=vec,
)
policy = make_policy(vecenv.driver_env, env_module, args)
train_config = args.train
train_config.track = args.track
train_config.device = args.train.device
train_config.env = args.env_name
if args.backend == 'clean_pufferl':
data = clean_pufferl.create(train_config, vecenv, policy, wandb=args.wandb)
if args.resume:
clean_pufferl.try_load_checkpoint(data)
while data.global_step < args.train.total_timesteps:
try:
clean_pufferl.evaluate(data)
clean_pufferl.train(data)
except KeyboardInterrupt:
clean_pufferl.close(data)
os._exit(0)
except Exception:
Console().print_exception()
os._exit(0)
clean_pufferl.evaluate(data)
clean_pufferl.close(data)
elif args.backend == 'sb3':
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env
from sb3_contrib import RecurrentPPO
envs = make_vec_env(lambda: make_env(**args.env),
n_envs=args.train.num_envs, seed=args.train.seed, vec_env_cls=DummyVecEnv)
model = RecurrentPPO("CnnLstmPolicy", envs, verbose=1,
n_steps=args.train.batch_rows*args.train.bptt_horizon,
batch_size=args.train.batch_size, n_epochs=args.train.update_epochs,
gamma=args.train.gamma
)
model.learn(total_timesteps=args.train.total_timesteps)
if __name__ == '__main__':
install(show_locals=False) # Rich tracebacks
# TODO: Add check against old args like --config to demo
parser = argparse.ArgumentParser(
description=f':blowfish: PufferLib [bright_cyan]{pufferlib.__version__}[/]'
' demo options. Shows valid args for your env and policy',
formatter_class=RichHelpFormatter, add_help=False)
assert 'config' not in sys.argv, '--config deprecated. Use --env'
parser.add_argument('--env', '--environment', type=str,
default='squared', help='Name of specific environment to run')
parser.add_argument('--pkg', '--package', type=str, default=None, help='Configuration in config.yaml to use')
parser.add_argument('--backend', type=str, default='clean_pufferl', help='Train backend (clean_pufferl, sb3)')
parser.add_argument('--mode', type=str, default='train', choices='train eval evaluate sweep autotune baseline profile'.split())
parser.add_argument('--eval-model-path', type=str, default=None, help='Path to model to evaluate')
parser.add_argument('--baseline', action='store_true', help='Baseline run')
parser.add_argument('--no-render', action='store_true', help='Disable render during evaluate')
parser.add_argument('--vec', '--vector', '--vectorization', type=str,
default='serial', choices='serial multiprocessing ray'.split())
parser.add_argument('--exp-id', '--exp-name', type=str, default=None, help="Resume from experiment")
parser.add_argument('--wandb-entity', type=str, default='jsuarez', help='WandB entity')
parser.add_argument('--wandb-project', type=str, default='pufferlib', help='WandB project')
parser.add_argument('--wandb-group', type=str, default='debug', help='WandB group')
parser.add_argument('--track', action='store_true', help='Track on WandB')
wandb_name, pkg, args, env_module, make_env, make_policy = load_config(parser)
if args.baseline:
assert args.mode in ('train', 'eval', 'evaluate')
args.track = True
version = '.'.join(pufferlib.__version__.split('.')[:2])
args.exp_id = f'puf-{version}-{args.env_name}'
args.wandb_group = f'puf-{version}-baseline'
shutil.rmtree(f'experiments/{args.exp_id}', ignore_errors=True)
run = init_wandb(args, args.exp_id, resume=False)
if args.mode in ('eval', 'evaluate'):
model_name = f'puf-{version}-{args.env_name}_model:latest'
artifact = run.use_artifact(model_name)
data_dir = artifact.download()
model_file = max(os.listdir(data_dir))
args.eval_model_path = os.path.join(data_dir, model_file)
if args.mode == 'train':
train(args, env_module, make_env)
elif args.mode in ('eval', 'evaluate'):
try:
clean_pufferl.rollout(
make_env,
args.env,
agent_creator=make_policy,
agent_kwargs={'env_module': env_module, 'args': args},
model_path=args.eval_model_path,
device=args.train.device
)
except KeyboardInterrupt:
os._exit(0)
elif args.mode == 'sweep':
sweep(args, wandb_name, env_module, make_env)
elif args.mode == 'autotune':
pufferlib.vector.autotune(make_env, batch_size=args.train.env_batch_size)
elif args.mode == 'profile':
import cProfile
cProfile.run('train(args, env_module, make_env)', 'stats.profile')
import pstats
from pstats import SortKey
p = pstats.Stats('stats.profile')
p.sort_stats(SortKey.TIME).print_stats(10)
elif args.mode == 'evaluate' and pkg == 'pokemon_red':
import pokemon_red_eval
pokemon_red_eval.rollout(
make_env,
args.env,
agent_creator=make_policy,
agent_kwargs={'env_module': env_module, 'args': args},
model_path=args.eval_model_path,
device=args.train.device,
)