forked from PufferAI/PufferLib
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yaml
660 lines (621 loc) · 12.6 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
### PufferLib demo environments
# Package parameters override defaults.
# Parameters for specific envs override packages
# You cannot specify any deeper than that.
default:
package: ~
env_name: ~
env: {}
policy: {}
use_rnn: False
rnn: {}
train:
seed: 1
torch_deterministic: True
cpu_offload: False
device: cuda
total_timesteps: 10_000_000
learning_rate: 2.5e-4
anneal_lr: True
gamma: 0.99
gae_lambda: 0.95
update_epochs: 4
norm_adv: True
clip_coef: 0.1
clip_vloss: True
vf_coef: 0.5
vf_clip_coef: 0.1
max_grad_norm: 0.5
ent_coef: 0.01
target_kl: ~
num_envs: 8
num_workers: 8
env_batch_size: ~
zero_copy: True
data_dir: experiments
checkpoint_interval: 200
batch_size: 1024
minibatch_size: 512
bptt_horizon: 16
compile: False
compile_mode: reduce-overhead
sweep:
method: random
name: sweep
metric:
goal: maximize
name: environment/episode_return
# Nested parameters name required by WandB API
parameters:
train:
parameters:
learning_rate: {
'distribution': 'log_uniform_values',
'min': 1e-4,
'max': 1e-1,
}
batch_size: {
'values': [512, 1024, 2048],
}
minibatch_size: {
'values': [128, 256, 512],
}
bptt_horizon: {
'values': [4, 8, 16],
}
### Arcade Learning Environment suite
# Convenience wrappers provided for common test environments
atari:
env_name: BreakoutNoFrameskip-v4
train:
batch_size: 1024
minibatch_size: 256
beamrider:
package: atari
env_name: BeamRiderNoFrameskip-v4
beam_rider:
package: atari
env_name: BeamRiderNoFrameskip-v4
beam-rider:
package: atari
env_name: BeamRiderNoFrameskip-v4
breakout:
package: atari
env_name: BreakoutNoFrameskip-v4
enduro:
package: atari
env_name: EnduroNoFrameskip-v4
pong:
package: atari
env_name: PongNoFrameskip-v4
qbert:
package: atari
env_name: QbertNoFrameskip-v4
seaquest:
package: atari
env_name: SeaquestNoFrameskip-v4
spaceinvaders:
package: atari
env_name: SpaceInvadersNoFrameskip-v4
space_invaders:
package: atari
env_name: SpaceInvadersNoFrameskip-v4
space-invaders:
package: atari
env_name: SpaceInvadersNoFrameskip-v4
breakout-max-sync:
package: atari
env_name: BreakoutNoFrameskip-v4
train:
num_envs: 48
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 6144
minibatch_size: 1536
breakout-max:
package: atari
env_name: BreakoutNoFrameskip-v4
train:
num_envs: 144
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 18432
minibatch_size: 4608
pong-max:
package: atari
env_name: PongNoFrameskip-v4
train:
num_envs: 96
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 65536
minibatch_size: 2048
box2d:
package: box2d
### Procgen Suite
# Shared hyperparams (best for all envs)
# Per-env hyperparams from CARBS
# Note: These need to be updated for 1.0
# batch sizes likely wrong
bigfish-exp:
package: procgen
env_name: bigfish
use_rnn: True
train:
total_timesteps: 8_000_000
num_envs: 480
num_workers: 24
env_batch_size: 240
zero_copy: True
batch_size: 18432
minibatch_size: 18432
update_epochs: 4
#ent_coef: 0.0025
#anneal_lr: False
learning_rate: 0.001
gamma: 0.9990684264891424
ent_coef: 0.0025487710400836
vf_coef: 1.1732211834792117
gae_lambda: 0.8620630095238284
clip_coef: 0.4104603426698214
#batch_size: 53210
#batch_rows: 5321
#bptt_horizon: 1
#update_epochs: 3
anneal_lr: False
vf_clip_coef: 0.2
starpilot-exp:
package: procgen
env_name: starpilot
use_rnn: True
train:
total_timesteps: 8_000_000
num_envs: 480
num_workers: 24
env_batch_size: 240
zero_copy: True
batch_size: 18432
minibatch_size: 18432
update_epochs: 4
learning_rate: 0.0004257280551714
gamma: 0.9930510505613882
ent_coef: 0.007836164188961
vf_coef: 5.482314699746532
gae_lambda: 0.82792978724664
clip_coef: 0.2645124138418521
anneal_lr: False
vf_clip_coef: 0.2
procgen:
env_name: bigfish
train:
total_timesteps: 25_000_000
learning_rate: 0.0005
num_workers: 16
num_envs: 64
batch_size: 16384
minibatch_size: 2048
gamma: 0.999
gae_lambda: 0.95
update_epochs: 3
anneal_lr: False
clip_coef: 0.2
vf_clip_coef: 0.2
bigfish:
package: procgen
env_name: bigfish
bossfight:
package: procgen
env_name: bossfight
caveflyer:
package: procgen
env_name: caveflyer
chaser:
package: procgen
env_name: chaser
climber:
package: procgen
env_name: climber
coinrun:
package: procgen
env_name: coinrun
dodgeball:
package: procgen
env_name: dodgeball
fruitbot:
package: procgen
env_name: fruitbot
heist:
package: procgen
env_name: heist
jumper:
package: procgen
env_name: jumper
leaper:
package: procgen
env_name: leaper
maze:
package: procgen
env_name: maze
miner:
package: procgen
env_name: miner
ninja:
package: procgen
env_name: ninja
plunder:
package: procgen
env_name: plunder
starpilot:
package: procgen
env_name: starpilot
bsuite:
package: bsuite
env_name: bandit/0
train:
total_timesteps: 1_000_000
num_envs: 1
butterfly:
package: butterfly
env_name: cooperative_pong_v5
classic_control:
env_name: cartpole
train:
total_timesteps: 500_000
num_envs: 64
env_batch_size: 64
classic-control:
package: classic_control
classiccontrol:
package: classic_control
cartpole:
package: classic_control
crafter:
package: crafter
env_name: CrafterReward-v1
train:
num_envs: 96
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 6144
compile: False
dm_control:
package: dm_control
dm-control:
package: dm_control
dmcontrol:
package: dm_control
dmc:
package: dm_control
dm_lab:
package: dm_lab
dm-lab:
package: dm_lab
dmlab:
package: dm_lab
dml:
package: dm_lab
griddly:
package: griddly
env_name: GDY-Spiders-v0
magent:
package: magent
env_name: battle_v4
microrts:
env_name: GlobalAgentCombinedRewardEnv
minerl:
env_name: MineRLNavigateDense-v0
minigrid:
env_name: MiniGrid-LavaGapS7-v0
train:
total_timesteps: 1_000_000
num_envs: 48
num_workers: 6
env_batch_size: 48
batch_size: 6144
#minibatch_size: 768
update_epochs: 4
minibatch_size: ~
#ent_coef: 0.05
anneal_lr: False
gae_lambda: 0.95
gamma: 0.95
ent_coef: 0.025
learning_rate: 2.5e-4
sweep:
method: bayes
name: sweep
metric:
goal: maximize
name: environment/episode_return
# Nested parameters name required by WandB API
parameters:
train:
parameters:
learning_rate: {
'distribution': 'log_uniform_values',
'min': 1e-4,
'max': 1e-1,
}
ent_coef: {
'distribution': 'log_uniform_values',
'min': 1e-2,
'max': 5e-2,
}
gamma: {
'values': [0.90, 0.925, 0.95, 0.975],
}
gae_lambda: {
'values': [0.90, 0.925, 0.95, 0.975],
}
batch_size: {
'values': [384, 768, 1536, 3072, 6144, 12288],
}
#minibatch_size: {
# 'values': [384, 768, 1536],
#}
minihack:
env_name: MiniHack-River-v0
train:
num_envs: 48
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 6144
minibatch_size: 1536
nethack:
env_name: NetHackScore-v0
train:
num_envs: 72
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 6144
update_epochs: 1
compile: False
nmmo:
train:
num_envs: 4
env_batch_size: 4
num_workers: 4
batch_size: 4096
minibatch_size: 2048
nmmo3:
use_rnn: True
train:
total_timesteps: 100_000_000
checkpoint_interval: 1000
num_envs: 24
num_workers: 24
env_batch_size: 8
update_epochs: 1
gamma: 0.998
batch_size: 65536
minibatch_size: 16384
#compile: True
env:
num_envs: 1 # NMMO3 provides its own fast multienv
#num_envs: 8 # NMMO3 provides its own fast multienv
#
nmmo3laptop:
package: nmmo3
train:
total_timesteps: 10_000_000
num_envs: 24
num_workers: 6
env_batch_size: 8
update_epochs: 1
gamma: 0.998
batch_size: 32768
minibatch_size: 16384
#compile: True
compile: False
nmmo3debug:
package: nmmo3
train:
total_timesteps: 20_000_000
num_envs: 1
num_workers: 1
env_batch_size: 1
update_epochs: 1
gamma: 0.99
ent_coef: 0.05
batch_size: 65536
minibatch_size: 16384
compile: False
#anneal_lr: False
sweep:
method: random
name: sweep
metric:
goal: maximize
name: environment/reward_dist
# Nested parameters name required by WandB API
parameters:
train:
parameters:
gamma: {
'values': [0.95, 0.975, 0.99, 0.995, 0.998],
}
learning_rate: {
'distribution': 'log_uniform_values',
'min': 1e-4,
'max': 1e-1,
}
batch_size: {
'values': [8192, 16384, 32768],
}
bptt_horizon: {
'values': [4, 8, 16],
}
nocturne:
package: nocturne
env_name: nocturne
train:
num_envs: 72
env_batch_size: 24
num_workers: 24
zero_copy: False
batch_size: 16384
minibatch_size: 4096
update_epochs: 1
# Ocean: PufferAI's first party environment suite
ocean:
env_name: squared
use_rnn: True
train:
total_timesteps: 30_000
learning_rate: 0.017
num_envs: 8
num_workers: 2
env_batch_size: 8
minibatch_size: 128
bptt_horizon: 4
device: cpu
bandit:
package: ocean
memory:
package: ocean
multiagent:
package: ocean
password:
package: ocean
performance:
package: ocean
spaces:
package: ocean
squared:
package: ocean
stochastic:
package: ocean
open_spiel:
env_name: connect_four
train:
num_envs: 32
batch_size: 4096
open-spiel:
package: open_spiel
openspiel:
package: open_spiel
connect_four:
package: open_spiel
env_name: connect_four
connect-four:
package: open_spiel
env_name: connect_four
connectfour:
package: open_spiel
env_name: connect_four
connect4:
package: open_spiel
env_name: connect_four
pokemon_red:
use_rnn: True
train:
total_timesteps: 1_000_000
num_envs: 96
num_workers: 24
env_batch_size: 32
zero_copy: False
update_epochs: 3
gamma: 0.998
batch_size: 65536
minibatch_size: 2048
compile: True
learning_rate: 2.0e-4
anneal_lr: False
pokemon-red:
package: pokemon_red
pokemonred:
package: pokemon_red
pokemon:
package: pokemon_red
pokegym:
package: pokemon_red
pokedebug:
package: pokemon_red
train:
num_envs: 4
num_workers: 4
env_batch_size: 2
batch_size: 2048
minibatch_size: 256
compile: True
links_awaken:
package: links_awaken
links-awaken:
package: links_awaken
linksawaken:
package: links_awaken
zelda:
package: links_awaken
slimevolley:
package: slimevolley
env_name: SlimeVolley-v0
#use_rnn: True
train:
num_envs: 3072
num_workers: 24
env_batch_size: 1024
zero_copy: False
batch_size: 16384
minibatch_size: 4096
update_epochs: 1
sweep:
method: bayes
name: sweep
metric:
goal: maximize
name: environment/episode_return
# Nested parameters name required by WandB API
parameters:
train:
parameters:
learning_rate: {
'distribution': 'log_uniform_values',
'min': 1e-4,
'max': 1e-1,
}
ent_coef: {
'distribution': 'log_uniform_values',
'min': 1e-4,
'max': 5e-2,
}
gamma: {
'values': [0.90, 0.925, 0.95, 0.975, 0.99],
}
gae_lambda: {
'values': [0.90, 0.925, 0.95, 0.975, 0.99],
}
batch_size: {
'values': [8192, 16384, 32768, 65536],
}
minibatch_size: {
'values': [2048, 4096, 8192],
}
smac: {}
starcraft:
package: smac
stable_retro:
env_name: Airstriker-Genesis
stable-retro:
package: stable_retro
stableretro:
package: stable_retro
retro:
package: stable_retro
vizdoom:
package: vizdoom
env_name: VizdoomHealthGatheringSupreme-v0
use_rnn: True
train:
num_envs: 144
num_workers: 24
env_batch_size: 48
zero_copy: False
batch_size: 8192
minibatch_size: 2048
update_epochs: 1