forked from tanzhenyu/baselines-tf2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
118 lines (95 loc) · 3.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import tensorflow as tf
from baselines.a2c import utils
from baselines.a2c.utils import ortho_init, conv
mapping = {}
def register(name):
def _thunk(func):
mapping[name] = func
return func
return _thunk
def nature_cnn(input_shape, **conv_kwargs):
"""
CNN from Nature paper.
"""
print('input shape is {}'.format(input_shape))
x_input = tf.keras.Input(shape=input_shape, dtype=tf.uint8)
h = x_input
h = tf.cast(h, tf.float32) / 255.
h = conv('c1', nf=32, rf=8, stride=4, activation='relu', init_scale=np.sqrt(2))(h)
h2 = conv('c2', nf=64, rf=4, stride=2, activation='relu', init_scale=np.sqrt(2))(h)
h3 = conv('c3', nf=64, rf=3, stride=1, activation='relu', init_scale=np.sqrt(2))(h2)
h3 = tf.keras.layers.Flatten()(h3)
h3 = tf.keras.layers.Dense(units=512, kernel_initializer=ortho_init(np.sqrt(2)),
name='fc1', activation='relu')(h3)
network = tf.keras.Model(inputs=[x_input], outputs=[h3])
return network
@register("mlp")
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh):
"""
Stack of fully-connected layers to be used in a policy / q-function approximator
Parameters:
----------
num_layers: int number of fully-connected layers (default: 2)
num_hidden: int size of fully-connected layers (default: 64)
activation: activation function (default: tf.tanh)
Returns:
-------
function that builds fully connected network with a given input tensor / placeholder
"""
def network_fn(input_shape):
print('input shape is {}'.format(input_shape))
x_input = tf.keras.Input(shape=input_shape)
# h = tf.keras.layers.Flatten(x_input)
h = x_input
for i in range(num_layers):
h = tf.keras.layers.Dense(units=num_hidden, kernel_initializer=ortho_init(np.sqrt(2)),
name='mlp_fc{}'.format(i), activation=activation)(h)
network = tf.keras.Model(inputs=[x_input], outputs=[h])
return network
return network_fn
@register("cnn")
def cnn(**conv_kwargs):
def network_fn(input_shape):
return nature_cnn(input_shape, **conv_kwargs)
return network_fn
@register("conv_only")
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
'''
convolutions-only net
Parameters:
----------
conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer.
Returns:
function that takes tensorflow tensor as input and returns the output of the last convolutional layer
'''
def network_fn(input_shape):
print('input shape is {}'.format(input_shape))
x_input = tf.keras.Input(shape=input_shape, dtype=tf.uint8)
h = x_input
h = tf.cast(h, tf.float32) / 255.
with tf.name_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
h = tf.keras.layers.Conv2D(
filters=num_outputs, kernel_size=kernel_size, strides=stride,
activation='relu', **conv_kwargs)(h)
network = tf.keras.Model(inputs=[x_input], outputs=[h])
return network
return network_fn
def get_network_builder(name):
"""
If you want to register your own network outside models.py, you just need:
Usage Example:
-------------
from baselines.common.models import register
@register("your_network_name")
def your_network_define(**net_kwargs):
...
return network_fn
"""
if callable(name):
return name
elif name in mapping:
return mapping[name]
else:
raise ValueError('Unknown network type: {}'.format(name))