-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxxx.py
248 lines (212 loc) · 10.8 KB
/
xxx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, IntegerType
spark = SparkSession.builder.config("spark.sql.session.charset", "UTF-8").appName("data_analysis").master("local").getOrCreate()
sc = spark.sparkContext
df = spark.read.format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true&characterEncoding=UTF-8"). \
option("dbtable", 'base_data'). \
option("user", "spark"). \
option("password", "12345678"). \
load()
csv_list = ['lianjia-双流.csv', 'lianjia-大邑.csv', 'lianjia-崇州.csv', 'lianjia-彭州.csv', 'lianjia-成华.csv',
'lianjia-新津.csv', 'lianjia-新都.csv', 'lianjia-武侯.csv', 'lianjia-浦江.csv', 'lianjia-温江.csv',
'lianjia-简阳.csv', 'lianjia-郫都.csv', 'lianjia-都江堰.csv', 'lianjia-金堂.csv', 'lianjia-金牛.csv',
'lianjia-锦江.csv', 'lianjia-青白江.csv', 'lianjia-青羊.csv', 'lianjia-龙泉驿.csv']
schema = StructType([
StructField("name", StringType(), False), # 名称
StructField("address", StringType(), False), # 地址
StructField("type", StringType(), False), # 房型
StructField("room", DoubleType(), False), # 面积
StructField("orient", StringType(), False), # 朝向
StructField("what_fix", StringType(), False), # 装修
StructField("level", StringType(), False), # 楼层
StructField("built_time", IntegerType(), False), # 建成时间
StructField("level_structure", StringType(), False), # 楼层结构
StructField("total_price", DoubleType(), False), # 总价格
StructField("room_price", DoubleType(), False), # 平方价格
StructField("concern_rate", IntegerType(), False), # 关注度
StructField("publish_time", StringType(), False) # 发布时间
])
def function1():
begin = 1979
end = 2024
bili = list()
df.createOrReplaceTempView("df_view")
for year in range(begin, end, 5):
sql_log = "select * from df_view where `built_time` < "+ str(year+5) + " and " + " `built_time` " + " >= " + str(year)
#print('总:', df.count())
#print('year 分', spark.sql(sql_log).count())
r = (float(spark.sql(sql_log).count()) / float(df.count()))*100
bili.append([str(year)+'-'+str(year+5),spark.sql(sql_log).count(),r])
print(bili)
rdd = sc.parallelize(bili)
df_to_mysql = rdd.toDF( StructType([StructField("built_time_partition", StringType(), False),
StructField("partition_count", IntegerType(), False),
StructField("rate", DoubleType(), False)])
)
print(df_to_mysql.show())
df_to_mysql.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true"). \
option("dbtable", "built_time_analysis"). \
option("user", "spark"). \
option("password", "12345678"). \
save()
def function2():
from pyspark.sql import functions as F
df.createOrReplaceTempView("df_view")
sql_log = "SELECT what_fix, count(*) as count, count(*) as rate FROM `df_view` GROUP BY what_fix"
df_ans = spark.sql(sql_log)
df_ans = df_ans.withColumn('rate', (F.col('rate').cast('float') / F.lit(df.count())) * 100)
print(df_ans.show())
df_ans.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true"). \
option("dbtable", "mod_analysis"). \
option("user", "spark"). \
option("password", "12345678"). \
save()
def function3():
from pyspark.sql import functions as F
df_new = df.withColumn('level', F.col('level').cast('string').substr(0, 3))
df_new.createOrReplaceTempView('df_new_view')
sql_log = "SELECT level, count(*) as count, count(*) as rate FROM `df_new_view` GROUP BY level"
df_new = spark.sql(sql_log)
df_new = df_new.withColumn('rate', (F.col('rate').cast('float') / F.lit(df.count())) * 100 )
print(df_new.show())
df_new.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true"). \
option("dbtable", "level_analysis"). \
option("user", "spark"). \
option("password", "12345678"). \
save()
def function4():
df.createOrReplaceTempView('df_view')
sql_log = "SELECT type ,count(*) as count, SUM(concern_rate) as concern_rate_sum, SUM(concern_rate)/ count(*) as factor " \
"from df_view GROUP BY type"
df_new = spark.sql(sql_log)
print(df_new.show())
df_new.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true"). \
option("dbtable", "type_and_concern_analysis"). \
option("user", "spark"). \
option("password", "12345678"). \
save()
def format_func(modified_list):
for i in range(1, len(modified_list), 1):
for j in range(13):
# format room from string to float
if j == 3:
modified_list[i][j] = float(str(modified_list[i][j]))
# format built_date from string to int
if j == 7:
modified_list[i][j] = int(modified_list[i][j])
# format total_price from string to float
if j == 9:
modified_list[i][j] = float(modified_list[i][j])
# format room_price from string to float (元/平)
if j == 10:
modified_list[i][j] = float(modified_list[i][j])
# format Concern_rate from string to int
if j == 11:
modified_list[i][j] = int(modified_list[i][j])
return modified_list
def function5():
from pyspark.sql import functions as F
df_list = list()
for each_csv in csv_list:
file_rdd = sc.textFile('hdfs://node-1:9000/user/root/spark/' + each_csv)
base_list = file_rdd.map(lambda x: x).collect()
modified_list = list()
label_list = ['名称', '地址', '房型', '面积', '朝向', '装修', '楼层', '建成时间', '楼层结构', '总价格',
'平方价格', '关注度', '发布时间']
modified_list.append(label_list)
for count_1 in range(1, len(base_list), 1):
each_item_List = str(base_list[count_1]).split(',')
# print(each_item_List)
# 处理每行的每列
write_info = True
for count_2 in range(len(each_item_List)):
# print(each_item_List[count_2], end=' ')
if count_2 == 0:
temp = str(each_item_List[count_2]).split(' ')[0]
each_item_List[count_2] = temp
# print(each_item_List[count_2])
if count_2 == 3:
temp = str(each_item_List[count_2]).split('平')[0]
each_item_List[count_2] = temp
# print(each_item_List[count_2])
if count_2 == 4:
temp = str(each_item_List[count_2]).split(' ')[0]
each_item_List[count_2] = temp
# print(each_item_List[count_2])
if count_2 == 6:
if '楼层' not in each_item_List[count_2]:
write_info = False
# print(each_item_List[count_2])
if count_2 == 7:
if not any(char.isdigit() for char in each_item_List[count_2]):
write_info = False
continue
temp = str(each_item_List[count_2]).split('年')[0]
each_item_List[count_2] = int(temp)
# print(each_item_List[count_2])
if count_2 == 9:
temp = float(str(each_item_List[count_2]).split('万')[0]) * 10000
each_item_List[count_2] = str(int(temp))
# print(each_item_List[count_2])
if count_2 == 10:
temp = each_item_List[count_2].split('"')[1] + \
each_item_List[count_2 + 1].split("元")[0]
each_item_List[count_2] = temp
each_item_List.pop(11)
# print(each_item_List[count_2])
if count_2 == 11:
temp = each_item_List[count_2].split('人')[0]
each_item_List[count_2] = temp
# print(each_item_List[count_2])
if count_2 == 12:
temp = each_item_List[count_2]
has_digit = any(char.isdigit() for char in temp)
if not has_digit:
write_info = False
if write_info:
modified_list.append(each_item_List)
# print(type(modified_list[1][3]))
modified_list = format_func(modified_list)
# print(type(modified_list[1][3]))
modified_list = modified_list[1: len(modified_list)]
rdd = sc.parallelize(modified_list)
df_new = rdd.toDF(schema)
print(each_csv + '去重前', df_new.count())
df_new = df_new.dropDuplicates()
print('去重后', df_new.count())
df_list.append(df_new)
index = 0
for each_df in df_list:
each_df_select = each_df.select('what_fix', 'room_price')
each_df_select_mean = each_df_select.groupBy('what_fix').avg().withColumnRenamed('avg(room_price)', 'mean_room_price')
each_df_select_max = each_df_select.groupBy('what_fix').max().withColumnRenamed('max(room_price)', 'max_room_price')
each_df_select_min = each_df_select.groupBy('what_fix').min().withColumnRenamed('min(room_price)', 'min_room_price')
each_df_select_mean = each_df_select_mean.withColumn('mean_room_price', F.round(F.col('mean_room_price'), 2))
each_df_select_max = each_df_select_max.withColumn('max_room_price', F.round(F.col('max_room_price'), 2))
each_df_select_min = each_df_select_min.withColumn('min_room_price', F.round(F.col('min_room_price'), 2))
each_df_select = each_df_select_max.join(each_df_select_mean, ['what_fix'] ,'inner')
each_df_select = each_df_select.join(each_df_select_min, ['what_fix'], 'inner')
df_list[index] = each_df_select
index += 1
print(each_df_select.show())
index = 0
for df_ in df_list:
# print(df_.show())
df_.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://192.168.101.20:3306/spark?useSSL=false&Unicode=true"). \
option("dbtable", csv_list[index].split('-')[1].split('.')[0] + 'mod_A_room_pirce_analysis_db'). \
option("user", "spark"). \
option("password", "12345678"). \
save()
index += 1
function5()