-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadd_aoi_labels.py
193 lines (151 loc) · 7.18 KB
/
add_aoi_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import pandas as pd
import os
import json
stimulus_regions_df = pd.DataFrame(columns=['stimulus id', 'version', 'start x', 'start y', 'width', 'height',
'end x', 'end y', 'region'])
participant_stimulus_version = None
in_dir = "./Data/ProcessedEyeMovementData/"
out_dir = "./Data/ProcessedEyeMovementWithAOI/"
def read_annotations():
global stimulus_regions_df
annotations_df = pd.read_csv("Data/PublicDataset/D4-Stimuli-ROI/annotations.csv")
for index, row in annotations_df.iterrows():
filename = row["filename"]
file = (str(filename.split(".png")[0])).split("_")
stimulus_id = int(file[0].replace("Q", ""))
version = file[1]
region_shape_attributes = row["region_shape_attributes"]
region_shape_attributes_json = json.loads(region_shape_attributes)
start_x = region_shape_attributes_json['x']
start_y = region_shape_attributes_json['y']
width = region_shape_attributes_json['width']
height = region_shape_attributes_json['height']
end_x = int(start_x) + int(width)
end_y = int(start_y) + int(height)
region_attributes = row["region_attributes"]
region = json.loads(region_attributes)["region type"]
new_data = pd.DataFrame({
"stimulus id": [stimulus_id],
"version": [version],
"start x": [start_x],
"start y": [start_y],
"width": [width],
"height": [height],
"end x": [end_x],
"end y": [end_y],
"region": [region]
})
stimulus_regions_df = pd.concat([stimulus_regions_df, new_data])
def read_processed_features():
global participant_stimulus_version
features = pd.read_csv("Data/PublicDataset/ProcessedFeatures/D2-Features.csv")
participant_stimulus_version = features[['participant', 'question', 'version']]
def get_stimulus_version_read_by_participant(participant_id, stimulus_id):
# Given the participant id and stimulus id, this function will return the version (fake or true) of the stimulus
# that the given participant has read
version = participant_stimulus_version.loc[(participant_stimulus_version.participant == participant_id) &
(participant_stimulus_version.question == stimulus_id)].version.item()
return version
def get_region_details(stimulus_id, version):
# Given the stimulus id and the version, this function will return aoi region information
if version == "fake":
regions = stimulus_regions_df.loc[(stimulus_regions_df["stimulus id"] == stimulus_id) &
(stimulus_regions_df["version"] == "false")]
else:
regions = stimulus_regions_df.loc[(stimulus_regions_df["stimulus id"] == stimulus_id) &
(stimulus_regions_df["version"] == "true")]
return regions
def getx(row):
xl = row['Gaze point left X']
xr = row['Gaze point right X']
if xl > 0.0 and xr > 0.0:
x = str((xl + xr) / 2.0)
elif xl > 0.0:
x = str(xl)
elif xr > 0.0:
x = str(xr)
else:
x = '-1'
return x
def gety(row):
yl = row['Gaze point left Y']
yr = row['Gaze point right Y']
if yl > 0.0 and yr > 0.0:
y = str((yl + yr) / 2.0)
elif yl > 0.0:
y = str(yl)
elif yr > 0.0:
y = str(yr)
else:
y = '-1'
return y
def get_aoi_label(row, regions):
x = float(getx(row))
y = float(gety(row))
if x < 0 or x > 1920:
return None
if y < 0 or y > 1080:
return None
aoi = regions.loc[(regions["start x"] <= x) & (regions["end x"] >= x) & (regions["start y"] <= y) &
(regions["end y"] >= y)].region
if len(aoi) == 0:
return "outside"
else:
return aoi.item()
def read_reformatted_eye_movements_data(file_path, filename):
ignore_list = ['P03_Stimulus7.csv', 'P03_Stimulus32.csv',
'P05_Stimulus17.csv',
'P10_Stimulus1.csv', 'P10_Stimulus2.csv',
'P10_Stimulus5.csv', 'P10_Stimulus7.csv', 'P10_Stimulus8.csv', 'P10_Stimulus12.csv',
'P10_Stimulus15.csv', 'P10_Stimulus19.csv', 'P10_Stimulus24.csv', 'P10_Stimulus28.csv',
'P10_Stimulus46.csv', 'P10_Stimulus52.csv',
'P11_Stimulus43.csv',
'P12_Stimulus7.csv', 'P12_Stimulus14.csv', 'P12_Stimulus16.csv', 'P12_Stimulus20.csv',
'P12_Stimulus22.csv', 'P12_Stimulus25.csv', 'P12_Stimulus29.csv', 'P12_Stimulus34.csv',
'P12_Stimulus35.csv', 'P12_Stimulus41.csv', 'P12_Stimulus43.csv', 'P12_Stimulus45.csv',
'P12_Stimulus50.csv', 'P12_Stimulus53.csv', 'P12_Stimulus55.csv', 'P12_Stimulus59.csv',
'P12_Stimulus60.csv',
'P18_Stimulus8.csv',
'P21_Stimulus2.csv',
'P24_Stimulus7.csv', 'P24_Stimulus9.csv',
'P26_Stimulus5.csv', 'P26_Stimulus12.csv', 'P26_Stimulus13.csv', 'P26_Stimulus15.csv',
'P26_Stimulus17.csv', 'P26_Stimulus20.csv', 'P26_Stimulus23.csv', 'P26_Stimulus27.csv',
'P26_Stimulus28.csv', 'P26_Stimulus30.csv', 'P26_Stimulus39.csv', 'P26_Stimulus47.csv',
'P26_Stimulus59.csv', 'P26_Stimulus60.csv']
if filename in ignore_list:
return
participant_stimulus = ((filename.split(".csv")[0]).split("_"))
participant_id = int(participant_stimulus[0].replace("P", ""))
stimulus_id = int(participant_stimulus[1].replace("Stimulus", ""))
version = get_stimulus_version_read_by_participant(participant_id, stimulus_id)
print("Participant " + str(participant_id) + " has read stimulus: " + str(stimulus_id) + ", version: " +
str(version))
regions = get_region_details(stimulus_id, version)
print("Reading the file at " + str(file_path))
df = pd.read_csv(file_path)
new_df = pd.DataFrame(columns=["Gaze point left X", "Gaze point right Y", "Gaze point left Y", "Gaze point right X",
"Pupil diameter left", "Pupil diameter right", "Recording timestamp", "AOI_Label"])
for index, row in df.iterrows():
aoi_label = get_aoi_label(row, regions)
new_data = pd.DataFrame({
"Gaze point left X": [row["Gaze point left X"]],
"Gaze point right X": [row["Gaze point right X"]],
"Gaze point left Y": [row["Gaze point left Y"]],
"Gaze point right Y": [row["Gaze point right Y"]],
"Pupil diameter left": [row["Pupil diameter left"]],
"Pupil diameter right": [row["Pupil diameter right"]],
"Recording timestamp": [row["Recording timestamp"]],
"AOI_Label": [aoi_label]
})
new_df = pd.concat([new_df, new_data])
new_df.to_csv(out_dir + filename)
if __name__ == "__main__":
os.chdir(in_dir)
filenames = os.listdir()
os.chdir("../../")
read_annotations()
read_processed_features()
for file in filenames:
if file.endswith(".csv"):
file_path = f"{in_dir}/{file}"
read_reformatted_eye_movements_data(file_path, file)