forked from catid/longhair
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcauchy_256.cpp
1579 lines (1324 loc) · 57.5 KB
/
cauchy_256.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2014 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Longhair nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "cauchy_256.h"
/*
* Cauchy Reed Solomon (CRS) codes [1]
*
* For general purpose error correction under ~32 symbols it is either the best
* option, or it is more flexible (due to patents/other awkwardness) than the
* alternatives.
*
* CRS codes are parameterized primarily by m, k, and w:
* k = Number of original data blocks.
* m = Number of redundant error correction blocks.
* w = Exponent of the binary extension Galois field used. eg. GF(2^w)
*
* The choice of w limits k and m by the relation: k + m <= 2^w
* So if w = 8, it can generate up to 256 blocks of original + correction data.
*
* In practice if you want to send more than 256 blocks of data there are
* definitely more efficient options than CRS codes that scale much more
* gracefully, so w = 8 is a flexible choice that does not require incredibly
* large tables and does not require an irritating data massaging step to fit
* input into the field.
*
* Note that m = 1 is a degenerate case where the best solution is to just XOR
* all of the k input data blocks together. So CRS codes are interesting for
* 1 < m < 32.
*
* These codes have been thoroughly explored by Dr. James Plank over the past
* ~10 years [1]. In this time there has not been a lot of work on improving
* Jerasure [2] to speed up CRS codes for small datasets.
*
* For example, all of the existing work on Jerasure is in reference to disk or
* cloud storage applications where the file pieces are many megabytes in size.
* A neglected area of interest is packet error correction codes, where the
* data is small and the setup time for the codes is critical.
*
* Jerasure is designed to be generic, so it has best matrices for m = 2 for
* all of the values of w that may be of interest. But it does not attempt to
* optimize for m > 2, which is a huge missed opportunity for better speed for
* packet error correction.
*
* Jerasure only tries one generator polynomial for GF(256) instead of
* exploring all 16 of the possible generators to find minimal Cauchy matrices.
* 6% improvement was possible.
*
* Jerasure uses a "matrix improvement" formula to quickly derive an optimal
* Cauchy matrix modified to reduce the number of ones. I came up with a new
* approach that initializes much faster while yielding roughly 30% fewer ones
* in the resulting matrix, in trade for a 30KB precomputed table.
*
* It may be possible to speed up the codec using other values of w, but a
* generic implementation that uses w = 7 will not run faster than a
* specialized implementation that uses w = 8, and speed above 400 MB/s is not
* especially meaningful even if it can be achieved.
*
* [1] "Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Storage Applications" (2005)
* http://web.eecs.utk.edu/~plank/plank/papers/CS-05-569.pdf
* [2] "Jerasure 2.0 A Library in C/C++ Facilitating Erasure Coding for Storage Applications" (2014)
* http://jerasure2.googlecode.com/svn/trunk/jerasure3/documentation/paper.pdf
*/
/*
* Improvement on Jerasure's 8x8 submatrix generation:
*
* Instead of bit-slicing across all 8 rows, I byte-slice instead.
* Specifically, in Jerasure it is done like the following.
*
* For example, if a GF(16) element is "9", then in Jerasure it would
* be split up between bitmatrix rows like this:
*
* 1...
* 0...
* 0...
* 1...
*
* where each column is the previous column multiplied by 2.
*
* This requires expensive bit operations to separate out each of the bits into
* each of the rows.
*
* However, the transpose of these submatrices is also invertible.
*
* A hand-wavy proof is that you can swap the X[] and Y[] values that generate
* the Cauchy matrix and it is still invertible, so taking the transpose of
* each element should be okay. This was experimentally verified.
*
* So this code slices up the GF(256) elements like this:
*
* 1001
* ....
* ....
* ....
*
* where each *row* is the previous row times 2.
*
* This completely eliminates the bit twiddling and works just as well.
*/
/*
* Up to 300% performance increase using windowing:
*
* The encoder has a very difficult task of generating all of the recovery
* symbols. The decoder often does not need any of them, so the performance
* of the codec can be judged by how fast the encoder runs. In practical
* applications, if the encoder is too slow, then it will not be used.
*
* To speed up the encoder specifically, I recognized that the performance
* of the encoder varies with m but not with k. To run faster with larger m,
* I re-used a windowed approach for bitmatrix multiplication from Wirehair:
*
* For example since each element of the GF(256) matrix represents an 8x8
* submatrix in the bitmatrix, and each column bit represents an offset into
* the input data, there are many rows that repeat the same bit patterns.
* Since this is an MDS code, the number of repeats for 4 bits should be
* roughly 8 * m / 16 = m / 2. So as m increases, it makes increasing sense
* to precalculate combinations of the input data and work on sets of bits.
*
* For a concrete example:
*
* 1000 -> "G"
* 0100 -> "L"
* 0010 -> "A"
* 0001 -> "D"
* 1101 = "G" + "L" + "D"
* 0101 = "L" + "D"
* 1110 = "G" + "L" + "A"
* 1011 = "G" + "A" + "D"
*
* The upper identity matrix maps to the original data. This implicitly exists
* in the code and does not need to be actually constructed. This would be a
* k = 4 case. The final 4 rows are the redundant blocks and so m = 4. In
* this simple example, w = 1. Note that the redundant blocks are linear
* combinations of the original blocks.
*
* Choosing a 2-bit window to calculate the redundant blocks results in a table
* with 4 entries:
*
* T[00] = (don't care)
* T[10] = "G"
* T[01] = "L"
* T[11] = "G" + "L" <= only actual precomputation
*
* T'[00] = (don't care)
* T'[10] = "A"
* T'[01] = "D"
* T'[11] = "A" + "D" <= only actual precomputation
*
* And the first two columns of bits for the bottom four rows becomes:
*
* (11) (01) = T[11] + T'[01]
* (01) (01) = T[01] + T'[01]
* (11) (10) = T[11] + T'[10]
* (10) (11) = T[10] + T'[11]
*
* Instead of calculating "G" + "L" twice, it can just be looked up from the
* table. Now imagine a larger table and many more rows. For this library,
* m = 4 means 32 binary rows, so the advantage of windowing becomes apparent.
* The number of memory accesses is decreased dramatically. Since the speed
* of the code drops significantly as m increases, this optimization attacks
* the problem directly.
*
* This library uses two 4-bit lookup tables because the bitmatrix is a
* multiple of w=8 bits in width. This also allows for avoiding storing the
* bitmatrix in memory - All the work can be done in registers.
* This 4-bit window technique starts being useful in practice at m = 5, and
* improves the encoder speed by up to 300%.
*
* Jerasure does attempt to do some row-reuse, but it tries to reuse the
* *entire* bitmatrix row in its "smart schedule" mode. This has very limited
* performance impact and actually hurts performance in most of my tests.
*
* Windowed bitmatrix multiplication is implemented in win_encode().
* A variation of this window technique is also used in the decoder for speed;
* it is done on triangular matrices during Gaussian elimination.
*/
#include "SiameseTools.h"
#include "gf256.h"
//#define CAT_CAUCHY_LOG
// Debugging
#ifdef CAT_CAUCHY_LOG
#include <iostream>
#include <cassert>
using namespace std;
#define DLOG(x) x
#else
#define DLOG(x)
#endif
// Constants for precomputed table for window method
static const int PRECOMP_TABLE_SIZE = 11; // Number of non-zero elements
static const int PRECOMP_TABLE_THRESH = 4; // Min recovery rows to use window
// NOTE: Some of the code assumes that threshold is at least 3.
#ifdef CAT_CAUCHY_LOG
static void print_word(const uint64_t row, int bits)
{
for (int jj = 0; jj < bits; ++jj) {
if (row & ((uint64_t)1 << jj)) {
cout << "1";
} else {
cout << "0";
}
}
cout << endl;
}
static void print_words(const uint64_t *row, int words)
{
for (int ii = 0; ii < words; ++ii) {
for (int jj = 0; jj < 64; ++jj) {
if (row[ii] & ((uint64_t)1 << jj)) {
cout << "1";
} else {
cout << "0";
}
}
}
cout << endl;
}
static void print_matrix(const uint64_t *matrix, int word_stride, int rows)
{
cout << "Printing matrix with " << word_stride << " words per row, and " << rows << " rows:" << endl;
for (int ii = 0; ii < rows; ++ii) {
print_words(matrix, word_stride);
matrix += word_stride;
}
}
#endif // CAT_CAUCHY_LOG
//// GF(256) math
// This is not as optimized as the one in gf256.h but it does not need to be fast.
// At some point I should delete this code and use gf256 instead.
// Tables generated with optimal polynomial 0x187 = 110000111b
static const uint16_t GFC256_LOG_TABLE[256] = {
512,255,1,99,2,198,100,106,3,205,199,188,101,126,107,42,4,141,206,78,
200,212,189,225,102,221,127,49,108,32,43,243,5,87,142,232,207,172,79,131,
201,217,213,65,190,148,226,180,103,39,222,240,128,177,50,53,109,69,33,18,
44,13,244,56,6,155,88,26,143,121,233,112,208,194,173,168,80,117,132,72,
202,252,218,138,214,84,66,36,191,152,149,249,227,94,181,21,104,97,40,186,
223,76,241,47,129,230,178,63,51,238,54,16,110,24,70,166,34,136,19,247,
45,184,14,61,245,164,57,59,7,158,156,157,89,159,27,8,144,9,122,28,
234,160,113,90,209,29,195,123,174,10,169,145,81,91,118,114,133,161,73,235,
203,124,253,196,219,30,139,210,215,146,85,170,67,11,37,175,192,115,153,119,
150,92,250,82,228,236,95,74,182,162,22,134,105,197,98,254,41,125,187,204,
224,211,77,140,242,31,48,220,130,171,231,86,179,147,64,216,52,176,239,38,
55,12,17,68,111,120,25,154,71,116,167,193,35,83,137,251,20,93,248,151,
46,75,185,96,15,237,62,229,246,135,165,23,58,163,60,183};
static const uint8_t GFC256_EXP_TABLE[512*2+1] = {
1,2,4,8,16,32,64,128,135,137,149,173,221,61,122,244,111,222,59,118,
236,95,190,251,113,226,67,134,139,145,165,205,29,58,116,232,87,174,219,49,
98,196,15,30,60,120,240,103,206,27,54,108,216,55,110,220,63,126,252,127,
254,123,246,107,214,43,86,172,223,57,114,228,79,158,187,241,101,202,19,38,
76,152,183,233,85,170,211,33,66,132,143,153,181,237,93,186,243,97,194,3,
6,12,24,48,96,192,7,14,28,56,112,224,71,142,155,177,229,77,154,179,
225,69,138,147,161,197,13,26,52,104,208,39,78,156,191,249,117,234,83,166,
203,17,34,68,136,151,169,213,45,90,180,239,89,178,227,65,130,131,129,133,
141,157,189,253,125,250,115,230,75,150,171,209,37,74,148,175,217,53,106,212,
47,94,188,255,121,242,99,198,11,22,44,88,176,231,73,146,163,193,5,10,
20,40,80,160,199,9,18,36,72,144,167,201,21,42,84,168,215,41,82,164,
207,25,50,100,200,23,46,92,184,247,105,210,35,70,140,159,185,245,109,218,
51,102,204,31,62,124,248,119,238,91,182,235,81,162,195,1,2,4,8,16,
32,64,128,135,137,149,173,221,61,122,244,111,222,59,118,236,95,190,251,113,
226,67,134,139,145,165,205,29,58,116,232,87,174,219,49,98,196,15,30,60,
120,240,103,206,27,54,108,216,55,110,220,63,126,252,127,254,123,246,107,214,
43,86,172,223,57,114,228,79,158,187,241,101,202,19,38,76,152,183,233,85,
170,211,33,66,132,143,153,181,237,93,186,243,97,194,3,6,12,24,48,96,
192,7,14,28,56,112,224,71,142,155,177,229,77,154,179,225,69,138,147,161,
197,13,26,52,104,208,39,78,156,191,249,117,234,83,166,203,17,34,68,136,
151,169,213,45,90,180,239,89,178,227,65,130,131,129,133,141,157,189,253,125,
250,115,230,75,150,171,209,37,74,148,175,217,53,106,212,47,94,188,255,121,
242,99,198,11,22,44,88,176,231,73,146,163,193,5,10,20,40,80,160,199,
9,18,36,72,144,167,201,21,42,84,168,215,41,82,164,207,25,50,100,200,
23,46,92,184,247,105,210,35,70,140,159,185,245,109,218,51,102,204,31,62,
124,248,119,238,91,182,235,81,162,195,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static const uint8_t GFC256_INV_TABLE[256] = {
0,1,195,130,162,126,65,90,81,54,63,172,227,104,45,42,235,155,27,53,
220,30,86,165,178,116,52,18,213,100,21,221,182,75,142,251,206,233,217,161,
110,219,15,44,43,14,145,241,89,215,58,244,26,19,9,80,169,99,50,245,
201,204,173,10,91,6,230,247,71,191,190,68,103,123,183,33,175,83,147,255,
55,8,174,77,196,209,22,164,214,48,7,64,139,157,187,140,239,129,168,57,
29,212,122,72,13,226,202,176,199,222,40,218,151,210,242,132,25,179,185,135,
167,228,102,73,149,153,5,163,238,97,3,194,115,243,184,119,224,248,156,92,
95,186,34,250,240,46,254,78,152,124,211,112,148,125,234,17,138,93,188,236,
216,39,4,127,87,23,229,120,98,56,171,170,11,62,82,76,107,203,24,117,
192,253,32,74,134,118,141,94,158,237,70,69,180,252,131,2,84,208,223,108,
205,60,106,177,61,200,36,232,197,85,113,150,101,28,88,49,160,38,111,41,
20,31,109,198,136,249,105,12,121,166,66,246,207,37,154,16,159,189,128,96,
144,47,114,133,51,59,231,67,137,225,143,35,193,181,146,79};
uint8_t * GF256_RESTRICT GFC256_MUL_TABLE = 0;
uint8_t * GF256_RESTRICT GFC256_DIV_TABLE = 0;
static void GFC256Init()
{
if (GFC256_MUL_TABLE) {
return;
}
// Allocate table memory 65KB x 2
GFC256_MUL_TABLE = new uint8_t[256 * 256 * 2];
GFC256_DIV_TABLE = GFC256_MUL_TABLE + 256 * 256;
uint8_t *m = GFC256_MUL_TABLE, *d = GFC256_DIV_TABLE;
// Unroll y = 0 subtable
for (int x = 0; x < 256; ++x) {
m[x] = d[x] = 0;
}
// For each other y value,
for (int y = 1; y < 256; ++y) {
// Calculate log(y) for mult and 255 - log(y) for div
const uint8_t log_y = (uint8_t)GFC256_LOG_TABLE[y];
const uint8_t log_yn = 255 - log_y;
// Next subtable
m += 256;
d += 256;
// Unroll x = 0
m[0] = 0;
d[0] = 0;
// Calculate x * y, x / y
for (int x = 1; x < 256; ++x) {
int log_x = GFC256_LOG_TABLE[x];
m[x] = GFC256_EXP_TABLE[log_x + log_y];
d[x] = GFC256_EXP_TABLE[log_x + log_yn];
}
}
}
extern "C" int _cauchy_256_init(int expected_version)
{
if (expected_version != CAUCHY_256_VERSION) {
return -1;
}
GFC256Init();
return 0;
}
// return x * y in GF(256)
// For repeated multiplication by a constant, it is faster to put the constant in y.
static SIAMESE_FORCE_INLINE uint8_t GFC256Multiply(uint8_t x, uint8_t y)
{
return GFC256_MUL_TABLE[((uint32_t)y << 8) + x];
}
// return x / y in GF(256)
// Memory-access optimized for constant divisors in y.
static SIAMESE_FORCE_INLINE uint8_t GFC256Divide(uint8_t x, uint8_t y)
{
return GFC256_DIV_TABLE[((uint32_t)y << 8) + x];
}
//// Cauchy matrix
#include "cauchy_tables_256.inc"
#define CAT_CAUCHY_MATRIX_STACK_SIZE 1024
// Precondition: m > 1
static const uint8_t *cauchy_matrix(int k, int m, int &stride,
uint8_t stack[CAT_CAUCHY_MATRIX_STACK_SIZE], bool &dynamic_memory)
{
dynamic_memory = false;
switch (m) {
case 2:
stride = 254;
return CAUCHY_MATRIX_2;
case 3:
stride = 253;
return CAUCHY_MATRIX_3;
case 4:
stride = 252;
return CAUCHY_MATRIX_4;
case 5:
stride = 251;
return CAUCHY_MATRIX_5;
case 6:
stride = 250;
return CAUCHY_MATRIX_6;
}
uint8_t *matrix = stack;
int matrix_size = k * (m - 1);
if (matrix_size > CAT_CAUCHY_MATRIX_STACK_SIZE) {
matrix = new uint8_t[matrix_size];
dynamic_memory = true;
}
// Get X[] and Y[] vectors
const uint8_t *Y = CAUCHY_MATRIX_Y; // Y[0] = 0
int n = m - 7; // X[0] = 1
const uint8_t *X = CAUCHY_MATRIX_X + n*249 - n*(n + 1)/2;
// A B C D E <- X[]
// F 1 1 1 1 1
// G a b c d e
// H f g h i j
//
// F = 0, A = 1
uint8_t *row = matrix;
for (int y = 1; y < m; ++y) {
uint8_t G = Y[y - 1];
// Unroll x = 0
*row++ = GFC256_INV_TABLE[1 ^ G];
for (int x = 1; x < k; ++x) {
uint8_t B = X[x - 1];
// b = (B + F) / (B + G), F = 0
*row++ = GFC256Divide(B, B ^ G);
}
}
stride = k;
return matrix;
}
//// Decoder
// Specialized fast decoder for m = 1
static void cauchy_decode_m1(int k, Block *blocks, int block_bytes)
{
// Find erased row
Block *erased = blocks;
for (int ii = 0; ii < k; ++ii, ++erased) {
if (erased->row >= k) {
DLOG(cout << "Found erased row " << ii << " on block row " << (int)erased->row << endl;)
break;
}
}
// XOR all other blocks into the recovery block
uint8_t *out = erased->data;
const uint8_t *in = 0;
// For each block,
for (int ii = 0; ii < k; ++ii) {
Block *block = blocks + ii;
if (block != erased) {
if (!in) {
in = block->data;
} else {
gf256_add2_mem(out, in, block->data, block_bytes);
in = 0;
}
}
}
// Complete XORs
if (in) {
gf256_add_mem(out, in, block_bytes);
}
}
// Sort blocks into original and recovery blocks
static void sort_blocks(int k, Block *blocks,
Block *original[256], int &original_count,
Block *recovery[256], int &recovery_count, uint8_t erasures[256])
{
Block *block = blocks;
original_count = 0;
recovery_count = 0;
// Initialize erasures to zeroes
for (int ii = 0; ii < k; ++ii) {
erasures[ii] = 0;
}
// For each input block,
for (int ii = 0; ii < k; ++ii, ++block) {
int row = block->row;
// If it is an original block,
if (row < k) {
original[original_count++] = block;
erasures[row] = 1;
} else {
recovery[recovery_count++] = block;
}
}
// Identify erasures
for (int ii = 0, erasure_count = 0; ii < 256 && erasure_count < recovery_count; ++ii) {
if (!erasures[ii]) {
erasures[erasure_count++] = (uint8_t)ii;
}
}
}
// Windowed version of eliminate_original
static void win_original(Block *original[256], int original_count,
Block *recovery[256], int recovery_count,
const uint8_t *matrix, int stride, int subbytes,
uint8_t **tables[2])
{
// For each column to generate,
for (int jj = 0; jj < original_count; ++jj) {
Block *original_block = original[jj];
int original_row = original_block->row;
const uint8_t *column = matrix + original_row;
const uint8_t *data = original_block->data;
// Fill in tables
for (int ii = 0; ii < 2; ++ii, data += subbytes * 4) {
uint8_t **table = tables[ii];
table[1] = (uint8_t *)data;
table[2] = (uint8_t *)data + subbytes;
table[4] = (uint8_t *)data + subbytes * 2;
table[8] = (uint8_t *)data + subbytes * 3;
gf256_addset_mem(table[3], table[1], table[2], subbytes);
gf256_addset_mem(table[6], table[2], table[4], subbytes);
gf256_addset_mem(table[5], table[1], table[4], subbytes);
gf256_addset_mem(table[7], table[1], table[6], subbytes);
gf256_addset_mem(table[9], table[1], table[8], subbytes);
gf256_addset_mem(table[12], table[4], table[8], subbytes);
gf256_addset_mem(table[10], table[2], table[8], subbytes);
gf256_addset_mem(table[11], table[3], table[8], subbytes);
gf256_addset_mem(table[13], table[1], table[12], subbytes);
gf256_addset_mem(table[14], table[2], table[12], subbytes);
gf256_addset_mem(table[15], table[3], table[12], subbytes);
}
const int row_offset = original_count + recovery_count + 1;
// For each of the rows,
for (int ii = 0; ii < recovery_count; ++ii) {
Block *recovery_block = recovery[ii];
int matrix_row = recovery_block->row - row_offset;
const uint8_t *row = column + stride * matrix_row;
uint8_t *dest = recovery_block->data;
// If this matrix element is an 8x8 identity matrix,
if (matrix_row < 0 || row[0] == 1) {
// XOR whole block at once
gf256_add_mem(dest, original_block->data, subbytes * 8);
} else {
uint8_t slice = row[0];
// Generate 8x8 submatrix and XOR in bits as needed
for (int bit_y = 0;; ++bit_y) {
int low = slice & 15;
int high = slice >> 4;
// Add
if (low && high) {
gf256_add2_mem(dest, tables[0][low], tables[1][high], subbytes);
} else if (low) {
gf256_add_mem(dest, tables[0][low], subbytes);
} else {
gf256_add_mem(dest, tables[1][high], subbytes);
}
dest += subbytes;
if (bit_y >= 7) {
break;
}
slice = GFC256Multiply(slice, 2);
}
}
}
}
}
static void eliminate_original(Block *original[256], int original_count,
Block *recovery[256], int recovery_count,
const uint8_t *matrix, int stride, int subbytes)
{
DLOG(cout << "Eliminating original:" << endl;)
int row_offset = original_count + recovery_count + 1;
// For each recovery block,
for (int ii = 0; ii < recovery_count; ++ii) {
Block *recovery_block = recovery[ii];
int matrix_row = recovery_block->row - row_offset;
const uint8_t *row = matrix + stride * matrix_row;
DLOG(cout << "+ From recovery block " << ii << " at row " << matrix_row << ":" << endl;)
// For each original block,
for (int jj = 0; jj < original_count; ++jj) {
Block *original_block = original[jj];
int original_row = original_block->row;
uint8_t *dest = recovery_block->data;
DLOG(cout << "++ Eliminating original column " << original_row << endl;)
// If this matrix element is an 8x8 identity matrix,
if (matrix_row < 0 || row[original_row] == 1) {
// XOR whole block at once
gf256_add_mem(dest, original_block->data, subbytes * 8);
DLOG(cout << "XOR" << endl;)
} else {
// Grab the matrix entry for this row,
uint8_t slice = row[original_row];
// XOR in bits set in 8x8 submatrix
for (int bit_y = 0;; ++bit_y) {
const uint8_t *src = original_block->data;
for (int bit_x = 0; bit_x < 8; ++bit_x, src += subbytes) {
if (slice & (1 << bit_x)) {
gf256_add_mem(dest, src, subbytes);
}
}
// Stop after 8 bits
if (bit_y >= 7) {
break;
}
// Calculate next slice
slice = GFC256Multiply(slice, 2);
dest += subbytes;
}
}
}
}
}
static uint64_t *generate_bitmatrix(int k, Block *recovery[256], int recovery_count,
const uint8_t *matrix, int stride, const uint8_t erasures[256],
int &bitstride)
{
// Allocate the bitmatrix
int bitrows = recovery_count * 8;
bitstride = (bitrows + 63) / 64;
uint64_t *bitmatrix = new uint64_t[bitstride * bitrows];
uint64_t *bitrow = bitmatrix;
// For each recovery block,
for (int ii = 0; ii < recovery_count; ++ii) {
Block *recovery_block = recovery[ii];
// If first row of matrix,
int recovery_row = recovery_block->row - k;
if (recovery_row == 0) {
// Write 8x8 identity submatrix pattern across each bit row
uint64_t pattern = 0x0101010101010101ULL;
for (int jj = 0; jj < 8; ++jj, pattern <<= 1, bitrow += bitstride) {
for (int x = 0; x < bitstride; ++x) {
bitrow[x] = pattern;
}
}
} else {
const uint8_t *row = matrix + (recovery_row - 1) * stride;
int remaining = recovery_count;
const uint8_t *erasure = erasures;
// Otherwise read the elements of the matrix:
DLOG(cout << "For recovery row " << recovery_row << endl;)
// Generate eight 64-bit columns of the bitmatrix at a time
while (remaining > 0) {
// Take up to 8 columns at a time
int limit = remaining;
if (limit > 8) {
limit = 8;
}
remaining -= limit;
// Unroll first loop
uint64_t w[8];
uint8_t slice = row[*erasure++];
w[0] = (uint64_t)slice;
DLOG(cout << "+ Generating 8x8 submatrix from slice=" << (int)slice << endl;)
for (int jj = 1; jj < 8; ++jj) {
slice = GFC256Multiply(slice, 2);
w[jj] = (uint64_t)slice;
}
// For each remaining 8 bit slice,
for (int shift = 8; --limit > 0; shift += 8) {
slice = row[*erasure++];
DLOG(cout << "+ Generating 8x8 submatrix from slice=" << (int)slice << endl;)
w[0] |= (uint64_t)slice << shift;
for (int jj = 1; jj < 8; ++jj) {
slice = GFC256Multiply(slice, 2);
w[jj] |= (uint64_t)slice << shift;
}
}
// Write 64-bit column of bitmatrix
uint64_t *out = bitrow;
for (int jj = 0; jj < 8; ++jj, out += bitstride) {
out[0] = w[jj];
}
++bitrow;
}
bitrow += bitstride * 7;
}
// Set the row to what the final recovered row will be
recovery_block->row = erasures[ii];
}
return bitmatrix;
}
/*
* This version of GE is complicated by performing the operations in two steps:
*
* 1) The first round of operations finds the pivots,
* 2) and the second round runs the data XOR operations.
*
* The data XOR operations are selected by the bits left behind while choosing
* the pivots, so the rows that get XOR'd together need to be masked to avoid
* clearing the low bits.
*/
#define CAT_ROL64(n, r) ( (uint64_t)((uint64_t)(n) << (r)) | (uint64_t)((uint64_t)(n) >> (64 - (r))) ) /* only works for u64 */
#define CAT_ROR64(n, r) ( (uint64_t)((uint64_t)(n) >> (r)) | (uint64_t)((uint64_t)(n) << (64 - (r))) ) /* only works for u64 */
// Windowed version of Gaussian elimination
static void win_gaussian_elimination(int rows, Block *recovery[256],
uint64_t *bitmatrix, int bitstride,
int subbytes, uint8_t **tables[2])
{
const int bit_rows = rows * 8;
uint64_t mask = 1;
uint64_t *base = bitmatrix;
// First find all the pivots. This is similar to the unwindowed version,
// except that the bitmatrix low bits are not cleared, and the data is not
// XOR'd together:
// For each pivot to find,
for (int pivot = 0; pivot < bit_rows - 1; ++pivot, mask = CAT_ROL64(mask, 1), base += bitstride) {
const int pivot_word = pivot >> 6;
uint64_t *offset = base + pivot_word;
uint64_t *row = offset;
// For each option,
for (int option = pivot; option < bit_rows; ++option, row += bitstride) {
// If bit in this row is set,
if (row[0] & mask) {
uint8_t *src = recovery[pivot >> 3]->data + (pivot & 7) * subbytes;
DLOG(cout << "Found pivot " << pivot << endl;)
DLOG(print_matrix(bitmatrix, bitstride, bit_rows);)
// If the rows were out of order,
if (option != pivot) {
// Reorder data into the right place
uint8_t *data = recovery[option >> 3]->data + (option & 7) * subbytes;
gf256_memswap(src, data, subbytes);
// Reorder matrix rows
gf256_memswap(row - pivot_word, base, bitstride << 3);
}
uint64_t *other = row;
// For each other row,
while (++option < bit_rows) {
other += bitstride;
// If that row also has the bit set,
if (other[0] & mask) {
DLOG(cout << "Eliminating from row " << option << endl;)
other[0] ^= offset[0] & (~(mask - 1) ^ mask);
// For each remaining word,
for (int ii = 1; ii < bitstride - pivot_word; ++ii) {
other[ii] ^= offset[ii];
}
}
}
// Stop here
break;
}
}
}
// Use window method to XOR the bulk of the data:
// Name tables
uint8_t **lo_table = tables[0];
uint8_t **hi_table = tables[1];
// For each column to generate,
for (int x = 0; x < rows - 3; ++x) {
Block *block_x = recovery[x];
const uint8_t *data = block_x->data;
const uint64_t *bit_row = bitmatrix + bitstride * (x * 8 + 1) + (x / 8);
int bit_shift = (x % 8) * 8;
DLOG(print_matrix(bitmatrix, bitstride, rows * 8);)
DLOG(cout << "win_gaussian_elimination: " << x << endl;)
// For each of the two 4-bit windows,
for (int table_index = 0; table_index < 2; ++table_index) {
// Fill in lookup table
uint8_t **table = tables[table_index];
table[1] = (uint8_t *)data;
table[2] = (uint8_t *)data + subbytes;
table[4] = (uint8_t *)data + subbytes * 2;
table[8] = (uint8_t *)data + subbytes * 3;
// On second loop,
if (table_index == 1) {
// Clear the upper right square
for (int ii = 1; ii <= 8; ii <<= 1) {
int w = (uint8_t)(bit_row[0] >> bit_shift) & 15;
bit_row += bitstride;
DLOG(cout << "For upper-right square at " << ii << " : ";)
DLOG(print_word(w, 4);)
if (w) {
gf256_add_mem(hi_table[ii], lo_table[w], subbytes);
}
}
// Fix some variables for the second loop
bit_row -= bitstride * 3;
bit_shift += 4;
} else {
data += subbytes * 4;
}
DLOG(cout << "For triangle " << table_index << ":" << endl;)
DLOG(print_word(bit_row[0] >> bit_shift, 4);)
// Clear triangle
uint64_t word = bit_row[0] >> bit_shift;
bit_row += bitstride;
if (word & 1) {
gf256_add_mem(table[2], table[1], subbytes);
}
DLOG(print_word(bit_row[0] >> bit_shift, 4);)
word = bit_row[0] >> bit_shift;
bit_row += bitstride;
if (word & 1) {
gf256_add_mem(table[4], table[1], subbytes);
}
if (word & 2) {
gf256_add_mem(table[4], table[2], subbytes);
}
DLOG(print_word(bit_row[0] >> bit_shift, 4);)
word = bit_row[0] >> bit_shift;
bit_row += bitstride;
if (word & 1) {
gf256_add_mem(table[8], table[1], subbytes);
}
if (word & 2) {
gf256_add_mem(table[8], table[2], subbytes);
}
if (word & 4) {
gf256_add_mem(table[8], table[4], subbytes);
}
// Generate table
gf256_addset_mem(table[3], table[1], table[2], subbytes);
gf256_addset_mem(table[6], table[2], table[4], subbytes);
gf256_addset_mem(table[5], table[1], table[4], subbytes);
gf256_addset_mem(table[7], table[1], table[6], subbytes);
gf256_addset_mem(table[9], table[1], table[8], subbytes);
gf256_addset_mem(table[12], table[4], table[8], subbytes);
gf256_addset_mem(table[10], table[2], table[8], subbytes);
gf256_addset_mem(table[11], table[3], table[8], subbytes);
gf256_addset_mem(table[13], table[1], table[12], subbytes);
gf256_addset_mem(table[14], table[2], table[12], subbytes);
gf256_addset_mem(table[15], table[3], table[12], subbytes);
} // next 4-bit window
// Fix bit shift back to the start of the window
bit_shift -= 4;
// For each of the rows,
for (int y = x + 1; y < rows; ++y) {
Block *block_y = recovery[y];
uint8_t *dest = block_y->data;
DLOG(cout << "For row " << y << " at " << (uint64_t)dest << endl;)
for (int jj = 0; jj < 8; ++jj, bit_row += bitstride, dest += subbytes) {
uint8_t slice = (uint8_t)(bit_row[0] >> bit_shift);
int low = slice & 15;
int high = slice >> 4;
DLOG(cout << "Applying slice: ";)
DLOG(print_word(slice, 8);)
// Add
if (low && high) {
gf256_add2_mem(dest, lo_table[low], hi_table[high], subbytes);
} else if (low) {
gf256_add_mem(dest, lo_table[low], subbytes);
} else {
gf256_add_mem(dest, hi_table[high], subbytes);
}
}
}
}
int pivot = bit_rows - 3 * 8;
mask = (uint64_t)1 << (pivot & 63);
base = bitmatrix + (pivot + 1) * bitstride;
// Clear final 3 columns
for (; pivot < bit_rows - 1; ++pivot, mask = CAT_ROL64(mask, 1), base += bitstride) {
const uint8_t *src = recovery[pivot >> 3]->data + (pivot & 7) * subbytes;
const uint64_t *bit_row = base + (pivot >> 6);
DLOG(cout << "GE pivot " << pivot << endl;)
for (int other_row = pivot + 1; other_row < bit_rows; ++other_row, bit_row += bitstride) {
if (bit_row[0] & mask) {
uint8_t *dest = recovery[other_row >> 3]->data + (other_row & 7) * subbytes;
DLOG(cout << "+ Foresub to row " << other_row << endl;)
gf256_add_mem(dest, src, subbytes);
}
}
}
}