-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrecognizer.py
110 lines (85 loc) · 2.73 KB
/
recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 27 05:19:44 2018
@author: nilesh
"""
#importing libraries
import cv2,time,os,datetime
import numpy as np
def save_att(student_id):
#present=0
print("hhhhh")
d=datetime.date.today()
ids=[]
file_name=d.strftime("%d_%B"+".txt")
try:
with open(file_name,'r+') as file_data:
for line in file_data:
id,state=line.split(",")
ids.append(int(id))
if student_id not in ids:
#present=1
print("not present")
file_data.write("\n"+str(student_id)+",p")
file_data.seek(0)
print("marked")
except FileNotFoundError:
with open(file_name,'w') as file_data:
file_data.write(str(student_id)+",p")
print("file created")
#setting font for puttext
font=cv2.FONT_HERSHEY_SIMPLEX
#loading and reading data from the saved training files
face_data=np.load('training_faces.npy')
labels=np.load('training_ids.npy')
print(labels)
#creating recognizer
recognizer=cv2.face.LBPHFaceRecognizer_create()
#training the recognizer
recognizer.train(face_data,np.array(labels))
#flag for the detected face
detected=0
#cascading
cascade=cv2.CascadeClassifier('face.xml')
# opening camera
'''width=640
height = 480
os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "rtsp_transport;udp"
cam=cv2.VideoCapture("rtsp://192.168.10.240:554/onvif1",cv2.CAP_FFMPEG)
cam.set(3,width)
cam.set(4,height)
'''
cam=cv2.VideoCapture(0)
while cam.isOpened():
# reading frame
frame=cam.read()[1]
#converting frame to gray
gray_frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces=cascade.detectMultiScale(gray_frame,1.5,5)
for (x,y,w,h) in faces:
#drawing rectangle on the faces
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),1)
#predicting the label and confidence
label,confidence=recognizer.predict(gray_frame[y:y+h,x:x+w])
print(label)
#checking for confidence (the lower the confidence the more accurate the prediction is)
if confidence<70:
save_att(label)
if label==1:
msg="salman"
elif label==0:
msg="nilesh"
#printing the message
#cv2.putText(frame,msg,(x,y),font,1,(255,255,255),3,cv2.LINE_AA)
#changing flag to 1
detected=1
cv2.imshow('live',frame)
#handler
if cv2.waitKey(2) & 0xFF == ord('q'):
break
#elif cv2.waitKey(2) & detected==1:
# time.sleep(0.5)
# break
cv2.destroyAllWindows()
cam.release()