forked from jeffersonscientific/AM4_runtime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAM4py.py
965 lines (937 loc) · 46.3 KB
/
AM4py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
import numpy
import scipy
import matplotlib as mpl
import matplotlib.dates as mpd
import pylab as plt
import datetime
import os,sys
import datetime as dtm
#
import subprocess
import requests
import tarfile
import shutil
#
import urllib
import contextlib
# import urllib.request as request
# from contextlib import closing
#
import re
#
import json
#
# we'll probably need this eventually, but maybe we can try to make it optional, if it's going to be a problem...
#import netCDF4
#
#
class NML(dict):
#
def __init__(self):
self.__dict__.update({ky:vl for ky,vl in locals().items() if not ky in ('self', '__class__')})
#
def assign(self, ky1, ky2, val):
# a "safe" assignment operator. If the keys do not exist, fail and raise an exception.
if ky1 in self.keys() and ky2 in self[ky1].keys():
self[ky1][ky2] = val
#
return True
else:
err_str = '{} not in self[{}].keys()'.format(ky2, ky1)
if not(ky1) in self.keys():
err_str = "{} not in self.keys()"
#
raise NameError(err_str)
return False
#
def nml_to_json(self, nml_in=None, json_out=None):
'''
# convert nml to dict; save dict as class member; if json_out is not None,
# export json to json_out
#
# NOTE: The format for .nml does not appear to be very strictly defined. Basically, it is not
#. well defined if key-value pairs are separated by CRLF ('\n') or comma ',' -- oh, and also commas
#. are allowed (in some cases) withink values. So this might be a work in progress, to be able
#. to generally define k-v pairs. Right now, its success rests a little bit on, "please, all that
#. is holy, let them not allow this or that..."
#
# @nml_in: filenname of input nml
# @json_out: filename of output json file.
#.
'''
#
if nml_in is None:
nml_in = self.nml
#
#nml_dict = {}
group_name = ''
#k_group = 0
#
values_out = {}
ky = ''
with open(nml_in) as fin:
for rw in fin:
rw = rw.strip()
#
# TODO: maye we should retain comments? if so, we'll need to switch the nested
#. structure to a list (-like), instead of a dict., to allow for multiple commented-out
# entries.
#
# for a mid-line comment:
rw = rw.split('!')[0]
#
if len(rw)==0 or rw[0] in ['!', '\n']:
continue
#
if rw[0]=='/':
# end of section
if not group_name.strip() == '':
self[group_name] = values_out
#
if rw[0]=='&':
# new group:
#if not group_name == '':
# self[group_name] = values_out
# #nml_dict[group_name]=values_out
#
group_name = rw[1:].strip()
values_out = {}
ky=''
val=''
#if not group_name in nml_dict.keys():
# nml_dict[group_name]={}
continue
#
#
#print('** ', rw)
#
# TODO: this logic is almost right, and will probably work most of the time, but
#. it might be better to be more robust about allowing multi-line entries. Note
#. this will not work properly for a multi-entry line that end in a multi-line entry.
if rw.startswith('/'):
values_out[ky]=val.strip()
continue
#
ky_vl = rw.split('=')
if len(ky_vl) == 1:
#print('*** debug: ', val, ky_vl)
#val = val + ky_vl[0]
val = '{}\n{}'.format(val, rw)
continue
elif len(ky_vl) == 2:
if not ky=='':
values_out[ky]=val.strip()
ky,val = [s.strip() for s in ky_vl]
elif len(ky_vl) > 2:
# there are multiple entries, presumably separated by commas?? so
# key=val,key=val,key=val...
#print('** DEBUG: ', [s.strip() for s in re.split('=|,', rw) if not s.strip()==''])
values_out.update(dict(numpy.reshape([s.strip()
for s in re.split('=|,', rw) if not s.strip()==''], (-1,2))))
#
#
#self.nml_dict=nml_dict
#self.update(nml_dict)
#
if not json_out is None:
with open(json_out, 'w') as fout:
#json.dump(nml_dict, fout)
# can we just dump self?
json.dump(self, fout)
#json.dump({ky:vl for ky,vl in self.items()})
#
#
return None
#return nml_dict
#
#
def json_to_nml(self, nml_out='input.nml', json_in=None, indent=None, file_mode='w'):
'''
# convert json or dict to an nml. export to nml_out.
# TODO: continue to evaluate how lists, tuples, etc. are encoundered and handled. For example,
# we want output to be like, format = 6,8 , not format = [6,8]. so far, i don't see any "[]"
#. characters in .nml files, so we can probably just get rid of them, but it might be smarter
#. to just recognize when we have a list type... or to enforce that all values are saved internally
# as strings... The latter may become necessary, since there does not appear to be a good standard
#. for comma, space, etc. separating values (or fields).
'''
#
if json_in is None:
json_in = self
#
if indent is None:
indent = 4*chr(32)
#
#
if isinstance(json_in, str):
with open(json_in, 'r') as fin:
json_in = json.load(fin)
#
#
with open(nml_out, file_mode) as fout:
for group,entries in json_in.items():
fout.write('&{}\n'.format(group))
#
for entry,val in entries.items():
if entry.strip() == '':
continue
fout.write('{}{} = {}\n'.format(indent, entry, val ))
fout.write('/\n\n')
#
#
class NML_from_nml(NML):
def __init__(self, input_nml, output=None):
#
nml_out=output
super(NML_from_nml,self).__init__()
self.__dict__.update({ky:vl for ky,vl in locals().items() if not ky in ('self', '__class__')})
#
# is this useful?
#with open(input_nml) as fin:
# self.nml = fin.read()
#
self.nml_to_json(input_nml, json_out=output)
#
class NML_from_json(NML):
def __init__(self, input_json, output=None):
#
json_out = output
super(NML_from_json,self).__init__()
self.__dict__.update({ky:vl for ky,vl in locals().items() if not ky in ('self', '__class__')})
#
with open(input_json) as fin:
#self.nml_dict = json.load(fin)
self.update(json.load(fin))
#
if not output is None:
self.nml = self.json_to_nml(self.nml_json, output)
#
#
#
#
class AM4_batch_scripter(object):
mpi_execs = {'mpirun':{'exec': 'mpirun', 'ntasks':'-np ', 'cpu_per_task':'--cpus-per-proc '},
'srun':{'exec':'srun', 'ntasks':'--ntasks=', 'cpu_per_task':'--cpus-per-task='}}
#
# TODO: figure out how to move these to .yaml (or call it what you want)
# config files. They really don't belong here like this. Also, better
# way to manage the container version/module
HPC_configs={
'mazama_hpc':{'cpus_per_node':24, 'cpu_slots':2, 'cpu_make':'intel', 'cpu_gen':'haswell',
'mem_per_node':64, 'modules':['intel/19', 'openmpi_3/', 'gfdl_am4/']},
'sherlock2_hpc':{'cpus_per_node':24, 'cpu_slots':2, 'cpu_make':'intel', 'cpu_gen':'skylake',
'mem_per_node':192, 'slurm_constraint':'CPU_GEN:SKX'},
'sherlock2_hpc2':{'cpus_per_node':24, 'cpu_slots':2, 'cpu_make':'intel', 'cpu_gen':'skylake',
'mem_per_node':384, 'slurm_constraint':'CPU_GEN:SKX'},
'sherlock3_base':{'cpus_per_node':32, 'cpu_slots':1, 'cpu_make':'AMD', 'cpu_gen':'EPYC_7502',
'mem_per_node':256, 'slurm_constraint':'CLASS:SH3_CBASE', 'modules':['am4/singularity_gfdl/2021.1.0']},
'sherlock3_base_singularity':{'cpus_per_node':32, 'cpu_slots':1, 'cpu_make':'AMD', 'cpu_gen':'EPYC_7502',
'mem_per_node':256, 'slurm_directives':{'constraint':'CLASS:SH3_CBASE'}, 'modules':['am4/singularity_gfdl/2021.1.0']},
'sherlock3_singularity':{'cpus_per_node':[32,128], 'cpu_slots':[1,2], 'cpu_make':'AMD', 'cpu_gen':['EPYC_7502''EPYC_7742'],
'mem_per_node':[256,1024], 'slurm_directives':{'constraint':['CLASS:SH3_CBASE|CLASS:SH3_CPERF']}, 'modules':['am4/singularity_gfdl/2021.1.0']},
'sherlock3_perf':{'cpus_per_node':128, 'cpu_slots':2, 'cpu_make':'AMD', 'cpu_gen':'EPYC_7742',
'mem_per_node':1024, 'slurm_constraint':'CLASS:SH3_CPERF'},
'unknown':{'cpus_per_node':24, 'cpu_slots':2, 'cpu_make':'unknown', 'cpu_gen':'unknown',
'mem_per_node':64}
}
def __init__(self, batch_out=None, work_dir=None, mpi_exec='mpirun',
input_data_path=None, input_data_tar=None, input_data_url=None,
nml_template='nml_input_template.nml', modules=None,
diag_table_src='diag_table_v101', field_table_src='field_table_v101', data_table_src='data_table_v101',
coupler_res='coupler.res',
force_copy_input=0, do_tar=0, hpc_config='mazama_hpc',
npes_atmos=48, nthreads_atmos=1, npes_ocean=0,
job_name='AM4_run', current_date='1979,1,1,0,0,0',
slurm_directives={}, nml_directives={}, mpi_debug=False,
container_exe='singularity', am4_container_pathname=None, am4_exe='am4.x',
copy_timeout=6000, verbose=0, **kwargs):
# slurm_partition=None, slurm_time=None,
'''
# parameters? input data file?
# TODO: reorganize to a more generalized SLURM directives? there are a lot of 'default' behaviors, so be careful with
# the hierachy.
#
# not sure what this looks like yet, but... This script/class will be called by a wrapper
#. script. This process will constitute a step in a larer script (ie, each ~2 hour run in a
#. twohour queue process).
#. script
# 1) review, set up, etc. the working directory
# 2) Are the input data there?
# 3) if not, are the input data availble?
# 4) if not, is the tar available? if not, get it; then open, then copy.
# 5) evaluate the input/output data. Have we achieved our objectives
#. (which we've not yet defined -- runtime, etc.)? Define restart as necessary
#. (*** though actually, i guess this will be done by the calling script; this script will
#. just receive instructions).
# 6) copy diag_table nd create input.nml
# 7) execute MPI command
#
# for Mazama (note: the future will probabl hold am4.json files like, am4_mazama.json,
#. am4_sherlock3.json, etc.)
#
# current and local root path(s):
#
# @n_tasks: I believe n_tasks needs to be an integer multiple of 6, ie 6 faces to a cube.
# (so any threads work on a single task/cube face). For now, let's stick with that, particularly
#. since we'll probably usually use nthreads=1... because, though it would nominally be faster
# to do something like --ntasks=n_nodes --cpus-per-task=cpus_per_node , I think MOM6 still
# does not work with OpenMP.
#
# NOTE: slurm_directives{} and slurm-like variables:: It is not always crystal clear what variables
# make sense as the "job" or "simulation instance" or "slurm". Ie, it makes sense for the class instance
# to have something like a "job_name", though it is also a SLURM directive. Nominally, it makes sense that
# these are different. Let's set the precedent that values in the `slurm_directives` dict override all
# otherwise default or computed slurm directives. SO, we'll remove all slurm-only inputs and establish overwrite
# hierarchy on others.
#.
'''
# #
if isinstance(hpc_config, str):
if hpc_config.endswith('.json'):
hpc_config=json.load(hpc_config)
else:
hpc_config=self.HPC_configs[hpc_config]
#
# else hpc_config better be a dict of HW configs.
#
if isinstance(mpi_debug, str):
mpi_debug = is_true(mpi_debug)
#
# are container_exe orr am4_exe none-like?
if (container_exe or "invalid")=="invalid" or (am4_exe or "bogus")=="bogus":
raise Exception(f'EXCEPTION: container_exe={container_exe} or am4_exe={am4_exe} not valid. You may need to load an LMOD module.')
#
# slurm_directives:
# SLURM directive may be passed in either via the slurm_directives parameter (we'll handle dict. or a string; might add
# handling for 1 and 2d lists/arrays as well)., or from **kwargs with keys that start with 'slrum_' .
# start by checking for a string format. we'll probably handle that case before it gets here, but why not... assume if string,
# dir1 val1 dir2 val2 ...
if isinstance(slurm_directives, str):
slurm_directives={ky:vl for ky,vl in zip(slurm_directives.split(chr(32))[0:-1:2], slurm_directives.split(chr(32))[1::2])}
#
# add slurm kwds:
for ky,vl in kwargs.items():
if ky.startswith('slurm_'):
if verbose: print('** SLURM_DIRECTIVE: {}, {}'.format(ky,vl))
slurm_directives[ky[6:]]=vl
#
if ky.startswith('nml_'):
ky1,ky2 = ky[4:].split(':')
if verbose: print(f'** NML_DIRECTIVE kwarg: [{ky1}][{ky2}]={vl}')
#
if not ky1 in nml_directives.keys():
nml_directives[ky1] = {}
nml_directives[ky1][ky2]=vl
#
# add any slurm_directives from the hpc_config that are not overridden by inputs:
for ky,vl in hpc_config['slurm_directives'].items():
#
slurm_directives[ky]=slurm_directives.get(ky,vl)
#
if npes_atmos%6 != 0:
npes_atmos += npes_atmos%6
print('*** WARNING: npes_atmos must be a multiple of 6. Increasing tasks -> {} so that npes_atmos%6=0'.format(npes_atmosn_tasks))
#
# same for ocean? npes_ocean%6==0 ??? right now, we're not doing ocean, so...
# TODO: we can also check to see that we don't ask for more threads than we can get, but since
#. these will almost always be single-threaded, let's hold off...
#
cwd = os.getcwd()
root_path = os.path.dirname(os.path.abspath(cwd))
default_data_path = os.path.join(root_path, 'AM4_data', 'AM4_run')
#
if input_data_path is None:
input_data_path = default_data_path
input_data_tar = (input_data_tar or os.path.join(os.path.dirname(input_data_path), 'AM4_run.tar.gz') )
if work_dir is None:
work_dir = os.path.join(cwd, 'workdir')
if batch_out is None:
batch_out = os.path.join(work_dir, 'am4_batch.sh')
#
input_data_url = input_data_url or 'ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz'
# TODO: also download check validations:
# wget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sha256
# wget ftp://nomads.gfdl.noaa.gov/users/Ming.Zhao/AM4Documentation/GFDL-AM4.0/inputData/AM4_run.tar.gz.sig
# sha256sum -c AM4_run.tar.gz.sha256
#gpg --verify AM4_run.tar.gz.sig
#
# TODO: How to handle the nml file? here as part of the batch, or in a wrapper that handles both?
#. or some combination
#
# if modules not provided, look for it in hpc_config, otherwise some default set... or mayb should be blank?
if modules is None:
modules = hpc_config.get('modules', ['intel/19', 'openmpi_3/', 'gfdl_am4/'])
#modules = ['intel/19', 'openmpi_3/', 'gfdl_am4/']
if isinstance(modules, str):
modules = modules.split(',')
#
if input_data_path is None:
input_data_path = '{}/data/AM4_run'.format(root_path)
input_data_tar = input_data_tar or os.path.join(root_path, 'data', 'AM4_run.tar.gz')
#
if isinstance(mpi_exec, dict):
ky,vl = mpi_exec.items()[0]
#
# multi-category dict?
if isinstance(vl, dict):
self.mpi_execs.update(mpi_exec)
mpi_exec = vl
else:
# single-entry dict; add this full mpi_exec entry to mpi_execs
ky = mpi_exec['exec']
self.mpi_execs[ky] = mpi_exec.copy()
#
else:
mpi_exec = self.mpi_execs[mpi_exec]
#
#
# download, untar, copy input data:
#
self.__dict__.update({ky:vl for ky,vl in locals().items() if not ky in ('self', '__class__')})
#
layout_1 = get_AM4_layouts(self.ntasks_total)[0]
layout_io_1 = get_AM4_io_layouts(layout_1)[0]
layout_2 = get_AM4_layouts(self.ntasks_total/6)[0]
layout_io_2 = get_AM4_io_layouts(layout_2)[0]
self.__dict__.update({ky:vl for ky,vl in locals().items() if not ky in self.__dict__.keys()})
# write an input.nml file and copy other files?
#
#
# write a batch file:
# self.write_batch_script()
#
# NOTE: these nvcpu calculators will likely not work well for not-simple configurations,
#. but again, I think most of these jobs will be single-threaded.
@property
def cpus_total(self):
# NOTE: this is cpus, but not tasks. it should tell us how many cores we'll be expecting,
#. but probably is not something submitted to SLURM unless there are constraints on nodes.
return self.npes_atmos * self.nthreads_atmos + self.npes_ocean
@property
def ntasks_total(self):
return self.npes_atmos + self.npes_ocean
@property
def n_tasks(self):
return self.ntasks_total
@property
def n_threads(self):
return self.nthreads_atmos
#
#def layout_to_str(self, layout):
# return '{},{}'.format(*layout)
#
@property
def default_nml_reconfig(self):
# TODO: check these. if we're actually using ocean... is ocean supposet to be n*x=npes_ocean?
#. npes_total???
# TODO: also, consider handling restart here (at least partially)?
# return {'coupler_nml':{'atmos_npes':self.npes_atmos, 'atmos_nthreads':self.nthreads_atmos,
# 'ocean_npes':self.npes_ocean},
# 'fv_core_nml':{'layout':self.layout_2, 'io_layout':self.layout_io_2},
# 'ice_model_nml':{'layout':self.layout_1, 'io_layout':self.layout_io_1},
# 'land_model_nml':{'layout':self.layout_2, 'io_layout':self.layout_io_2},
# 'ocean_model_nml':{'layout':self.layout_1, 'io_layout':self.layout_io_1},
# }
# 13 April 2021: adding the value `ncores_per_node` to &coupler_nml seems to be generating an error in the newer release
# (xanadu_2021.01). So for now, let's get rid of it. I don't think it is used. We can use it internally to configure
# threads- or tasks-per-node, but nominally it does not belong in the general config anyway. So let's start by pulling
# it frm this default config.
# from coupler_nml: , 'ncores_per_node':self.hpc_config['cpus_per_node'
nml_configs = {'coupler_nml':{'atmos_npes':self.npes_atmos, 'atmos_nthreads':self.nthreads_atmos,
'ocean_npes':self.npes_ocean,
'current_date':self.current_date},
'fv_core_nml':{'layout':'{},{}'.format(*self.layout_2),
'io_layout':'{},{}'.format(*self.layout_io_2)},
'ice_model_nml':{'layout':'{},{}'.format(*self.layout_1),
'io_layout':'{},{}'.format(*self.layout_io_1)},
'land_model_nml':{'layout':'{},{}'.format(*self.layout_2),
'io_layout':'{},{}'.format(*self.layout_io_2)},
'ocean_model_nml':{'layout':'{},{}'.format(*self.layout_1),
'io_layout':'{},{}'.format(*self.layout_io_1)},
'atmos_model_nml':{'nxblocks':1, 'nyblocks':self.nthreads_atmos}
}
for ky,vl in self.nml_directives.items():
print('*** *** *** KY,VL: ', ky,vl)
nml_configs[ky] = nml_configs.get(ky, {})
#
nml_configs[ky].update(vl)
#
print('*** NML_CONFIGS: {}'.format(nml_configs) )
return nml_configs
#
def get_empty_workdir(self, work_dir=None, diag_table_src=None, field_table_src=None, data_table_src=None,
force_copy=0, verbose=None):
'''
# TODO: How do we do restarts, run with different resolution configs, etc.?
# start here by building a bare bones work_dir, with just the basic input files and an empty INPUT.
# we will work a little later to tune the workflows for default start, blank start, and restarts.
# TODO: maybe go through known defaults or templates to create empty input files? INPUT/MOM_input can (I think)
# be just a blank file, but some of the others are .nc files, and presumably require structure. We do have a NetCDF
# format copier someplace (dycore maybe?).
#
# Inputs:
# @work_dir: working directory (files will be copied to this path; sim will be run in this path.
# @diag_table_src, field_table_src, data_table_src: source files for {those}_src input files. By default,
# we'll keep local copies like field_table_v101.
# @force_copy: boolean to force copying/over-writing datta_table, field_table, diag_table, and maybe input.nml
# Nominally, we maybe have to rewrite input.nml every time anyway -- at least in priciple, even if only to reproduce
# it 1:1. We'll be working out those workflows as we go...
# *** !!! ***
# NOTE: For now, let's ignore input.nml here; we'll just keep that as a separate process (for now anyway).
'''
#
# TODO: consider NOT allowing a local workdir by using the None-like syntax,
# work_dir = work_dir or self.work_dir
# which will trigger on None or empty (last time I checked anyway).
if work_dir is None:
work_dir = self.work_dir
#
verbose = verbose or self.verbose
verbose = verbose or False
#
if diag_table_src is None:
diag_table_src = self.diag_table_src
if field_table_src is None:
field_table_src = self.field_table_src
if data_table_src is None:
data_table_src = self.data_table_src
#
# create workdir + RESTART and INPUT subdirs.
for pth in ('INPUT', 'RESTART'):
if not os.path.isdir(os.path.join(work_dir, pth)):
os.makedirs(os.path.join(work_dir, pth))
#
#diag_path = os.path.join(work_dir, 'diag_table')
#if not os.path.isfile(diag_path) or force_copy:
# shutil.copy(diag_table_src, os.path.join(work_dir, 'diag_table'))
#
# copy components into workdir:
for src,dst in [(field_table_src, 'field_table'), (data_table_src, 'data_table'), (diag_table_src, 'diag_table')]:
pth_dst = os.path.join(work_dir, dst)
if not os.path.isfile(pth_dst) or force_copy:
shutil.copy(src, pth_dst)
if verbose:
print('*** VERBOSE: Created input file: {} from source: {}'.format(pth_dst, src))
#
def sim_elapsed_time(self):
start, stop = self.get_sim_date_range(string_format=False)
#
return (stop-start).days
#
def get_sim_date_range(self, work_dir=None, coupler_res=None, default_restart_date=None, string_format=True):
'''
# get simulation date range from coupler.res
'''
if work_dir is None:
work_dir = self.work_dir
coupler_res = coupler_res or self.coupler_res
#
# look for coupler_res in both INPUT and RESTART
default_restart_date = default_restart_date or self.current_date
#
# default value:
#restart_date = '1979,1,1,0,0,0'
# NOTE: for multiple restarts, coupler.res will exist in both RESTART
# and INPUT; RESTART/coupler.res will... should have the more recent
# date.
if os.path.isfile(os.path.join(work_dir, 'RESTART', 'coupler.res')):
coupler_path = os.path.join(work_dir, 'RESTART', 'coupler.res')
elif os.path.isfile(os.path.join(work_dir, 'INPUT', 'coupler.res')):
coupler_path = os.path.join(work_dir, 'INPUT', 'coupler.res')
else:
print('*** WARNING: coupler_path not available in RESTART or INPUT. Using default value, {}'.format(default_restart_date))
#print('*** ERROR: No coupler_path. Use default value, {}'.format(default_current_date))
return default_restart_date
#
with open(coupler_path, 'r') as fin:
cal_type = fin.readline().split()[0]
for rw in fin:
if rw.startswith('\n'):
continue
#
rws = rw.split()
#
# these data are not well formatted for programmatic ingestion,
# so this will look a little silly:
if '_'.join(rws[6:8]).lower() == 'model_start':
start_date = ','.join(rw.split()[0:6])
if '_'.join(rws[6:8]).lower() == 'current_model':
restart_date = ','.join(rw.split()[0:6])
if string_format:
return start_date, restart_date
else:
return dtm.datetime(*numpy.array(start_date.split(',')).astype(int)), dtm.datetime(*numpy.array(restart_date.split(',')).astype(int))
def get_restart_current_date(self, work_dir=None, default_restart_date=None):
'''
# TODO: depricate this; replace with get sim_date_range(); just keep the
# last value.
#
# get current_date value for restart from RESTART/coupler.res
# TODO: allow better granualarity than just work_day? apply some logic to allow full path to coupler.res, but
#
# NOTE: this works, because the restart date is the last date in the field,
# but nominally... there are two dates, some calendar info, etc.
# we'll need the first date (start date) to do scripted restart sequences.
'''
if work_dir is None:
work_dir = self.work_dir
default_restart_date = default_restart_date or self.current_date
#
# default value:
#restart_date = '1979,1,1,0,0,0'
# NOTE: for multiple restarts, coupler.res will exist in both RESTART
# and INPUT; RESTART/coupler.res will... should have the more recent
# date.
if os.path.isfile(os.path.join(work_dir, 'RESTART', 'coupler.res')):
coupler_path = os.path.join(work_dir, 'RESTART', 'coupler.res')
elif os.path.isfile(os.path.join(work_dir, 'INPUT', 'coupler.res')):
coupler_path = os.path.join(work_dir, 'INPUT', 'coupler.res')
else:
print('*** WARNING: coupler_path not available in RESTART or INPUT. Using default value, {}'.format(default_restart_date))
#print('*** ERROR: No coupler_path. Use default value, {}'.format(default_current_date))
return default_restart_date
#
#if not os.path.isfile(coupler_path):
# print('ERROR: no coupler_path')
# return restart_date
#
with open(coupler_path, 'r') as fin:
cal_type = fin.readline().split()[0]
for rw in fin:
if rw.startswith('\n'):
continue
#
# ... and keep going! we want the last date. we could also just iterate to EOF and then just read the last line.
# TODO: unindent this line to do the above?... spin through all rows, then process the last one. this assumes
# this file only contains dates.
restart_date = ','.join(rw.split()[0:6])
#
#
return restart_date
#
def get_input_data(self, work_dir=None, input_dir=None, input_tar=None, input_data_url=None,
force_copy=None, verbose=None, copy_timeout=None, diag_table_src=None):
if work_dir is None:
work_dir = self.work_dir
force_copy = force_copy or self.force_copy_input
input_dir = input_dir or self.input_data_path
input_tar = input_tar or self.input_data_tar
input_data_url = input_data_url or self.input_data_url
copy_timeout = copy_timeout or self.copy_timeout
diag_table_src = diag_table_src or self.diag_table_src
if verbose is None:
verbose = self.verbose
if verbose is None:
verbose = False
#
# root-dir for tar file:
if not os.path.isdir(os.path.dirname(input_tar)):
os.makedirs(os.path.dirname(input_tar))
#
# It is possible we might create work_dir in advance to add some files, but not copy all the data,
#. so let's use INPUT as our test case.
# TODO: better tests to (not) copy
#input_dir = os.path.join(work_dir, 'INPUT')
#
print('*** DEBUG: os.path.isdir(os.path.join(work_dir, \'INPUT\'))={}'.format(os.path.isdir(os.path.join(work_dir, 'INPUT'))))
#
# what is a minimum file-count for INPUT? the default input config is ~500 files.
if not os.path.isdir(work_dir):
os.makedirs(work_dir)
#
if not os.path.isdir(os.path.join(work_dir, 'INPUT')) or len(os.listdir(os.path.join(work_dir, 'INPUT')))<100 or force_copy:
# work_dir is not there or not complete, so
# we're going to copy data from the input source to the workdir.
# Do we have an input source?
#
# TODO: check for isdir(.input_path), then for .tar here.
if not os.path.isdir(input_dir):
# input data are not available; go get them!
#
if verbose:
print('*** VERBOSE: os.path.isfile(input_tar)={}'.format(os.path.isfile(input_tar)))
if not os.path.isfile(input_tar):
# No TAR file avilble; we'll have to get it...
# TODO: consider downloading data first, then opening and writing file to mitigate
#. opportunities for contamination.
if verbose: print('*** VERBOSE: fetching data from {}'.format(input_data_url))
#
# NOTE: requests. does not support ftp, so use urllib or urllib2
with contextlib.closing(urllib.request.urlopen(input_data_url)) as url_fin:
with open(input_tar, 'wb') as fout:
shutil.copyfileobj(url_fin, fout)
#
if verbose:
print('*** VERBOSE: untarring * {} * to: {} '.format(input_tar, input_dir))
with tarfile.open(input_tar, 'r:gz') as tar:
# this is another one of those cases where a shell call might be easier...
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise Exception("Attempted Path Traversal in Tar File")
tar.extractall(path, members, numeric_owner=numeric_owner)
safe_extract(tar, path=os.path.dirname(input_dir))
#
if verbose:
print('*** VERBOSE: copying input data from {} to {}'.format(input_dir, work_dir))
#
# Nuke existing workdir? for now, let's not...
# TODO: shutil.copy2() should work for this, but it's being tempermental, maybe about the
#. directory. So for now, let's just subprocess the shell command and revisit later. It could
#. be a versioing problem (subprocess and related libraries are pretty version twitchy).
# TODO: consider using os.walk() to do this; it will be something like (but syntax details TBD):
# for root, dirs, files in os.walk(src, topdown=True/False):
# for fn in files:
# shutil.copy(join(root,fn), dest_path )
# or maybe use shutil.copytree()
#
#src = input_dir
#dst = work_dir
# TODO: The Python copy options just don't seem to work very well (maybe there's a recursive option command or
#. something to tell it we're copying a directory?). Let's just use a shell command.
#shutil.copy2(input_dir, work_dir)
cp_command = 'cp -rf {}/* {}/'.format(input_dir, work_dir)
try:
# NOTE: beware the timeout.... I think the default timeout is 60 seconds or something;
#. this can take a while, so I've been using 6000 seconds as a default.
#sp_output = subprocess.run(cp_command.split(chr(32)), check=True,
# stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
sp_output = subprocess.run(cp_command, shell=True, check=True,
capture_output=True, timeout=copy_timeout)
except:
#print('*** copy error: stdout: {}, sterr: {}'.format(sp_output.stdout, sp_output=stderr) )
print('*** COPY ERROR: {}'.format(cp_command))
raise Exception('subprocess, copy error.')
#
if verbose:
print('*** VERBOSE: copy input data complete, from {} to {}'.format(input_dir, work_dir))
#
# copy diag_table from a source file. We're going to construct an input.nml separately.
# NOTE: Again, might be better to do this as a shell command, for a number of reasons.
shutil.copy(diag_table_src, os.path.join(work_dir, 'diag_table'))
#
if not os.path.isdir(os.path.join(work_dir, 'RESTART')):
os.makedirs(os.path.join(work_dir, 'RESTART'))
#
#
def make_NML(self, nml_template=None, nml_configs=[], nml_out=None, json_out=None):
'''
# Some logic to managing and writing nml output.
# @nml_template: An nml file or .json as a starter place.
# @ nml_configs: 1 or more dicts (allow json filenames??) with configuration(s); they will be
#. integrated, in order, via dict.update(nml_config)
#
'''
# add any default configs:
# NOTE: putting default_nml_reconfig first allows the user to override.
nml_configs = [self.default_nml_reconfig] + list(nml_configs)
nml_template = nml_template or self.nml_template
# determine the correct NML_from{} function, "f_handler":
if nml_template.endswith('.nml'):
f_handler = NML_from_nml
#NML = NML_from_nml(nml_template, output=None)
elif nml_template.endswith('.json'):
#NML = NML_from_json(nml_template, output=None)
f_handler = NML_from_json
else:
# guess?
# TODO: crack it open and look for .nml or
#NML = NML_from_nml(nml_template, json_out=None)
with open(nml_template, 'r') as fin:
f_handler = NML_from_json
for rw in fin:
if rw.startswith('&coupler_nml'):
# it is probably a .nml file.
f_handler = NML_from_nml
break
#
NML = f_handler(nml_template, None)
#
for config in nml_configs:
#
if isinstance(config, str):
with open(config, 'r') as fin:
config = json.load(config)
#
#
#NML.update(config)
for ky,d in config.items():
NML[ky].update(d)
#
#
if not nml_out is None:
NML.json_to_nml(nml_out=nml_out)
if not json_out is None:
with open(json_out, 'w') as fout:
json.dump(NML, fout)
#
self.NML=NML
#
return NML
#
def write_batch_script(self, fname_out=None, mpi_exec=None, slurm_directives=None, **kwargs):
'''
# Just as it sounds; write an AM4 batch script. use various inputs (prams, json, dicts?);
#. fetch, untar, copy input data as necessary, etc.
# Let's start by just scripting it out (mostly), and then we'll decide what to read in as
#. input prams, what to read in from JSON (or something), etc. Note that, for now, this will
# focus on a SE3 Mazama build/configuration.
'''
# , slurm_partition=None, slurm_time=None output_out=None, output_err=None,
#
# TODO: add 'slurm_constraint' if available... but really, we just want a generalized slurm_directives, or
# even better **slurm_directives. The main question is, do we want to keep 'special' directives, like
# chdir, output_out, etc., or remove that code and just put all directives into a single dict (or something like it)?
#
#fname_out = fname_out or os.path.join(self.work_dir, self.batch_out)
fname_out = fname_out or self.batch_out
mpi_exec = mpi_exec or self.mpi_exec
container_exe = self.container_exe
if self.mpi_debug:
container_exe = '{} --debug'.format(container_exe)
#
#output_out = output_out or 'AM4_out_%j.out'
#output_err = output_err or 'AM4_out_%j.err'\
#
# use input or self.slurm_directives, then add any slurm_ kwargs (like in init).
slurm_directives = slurm_directives or self.slurm_directives
for ky,vl in kwargs:
if ky.startswith('slurm_'):
slurm_directives[ky[6:]] = vl
#
for key,alt in [('chdir', self.work_dir), ('output', 'AM4_out_%j.out'), ('error', 'AM4_error_%j.err'), ('job-name', self.job_name)]:
slurm_directives[key]=slurm_directives.get(key, alt)
#chdir = chdir or self.work_dir
#slurm_partition = slurm_partition or self.slurm_partition
#slurm_time = slurm_time or self.slurm_time
#
with open(fname_out, 'w') as fout:
# This section should be pretty universal:
fout.write('#!/bin/bash\n#\n')
#
fout.write('#SBATCH --ntasks={}\n'.format(self.n_tasks))
fout.write('#SBATCH --cpus-per-task={}\n'.format(self.nthreads_atmos))
#if not self.job_name is None or self.job_name=='':
# fout.write('#SBATCH --job-name={}\n'.format(self.job_name))
#
#fout.write('#SBATCH --chdir={}\n'.format(chdir) )
#fout.write('#SBATCH --output={}\n'.format(output_out))
#fout.write('#SBATCH --error={}\n'.format(output_err))
#
# Additional SLURM directives:
for ky,vl in slurm_directives.items():
fout.write('#SBATCH --{}={}\n'.format(ky,vl))
#
#if not slurm_partition is None:
# fout.write('#SBATCH --partition={}\n'.format(slurm_partition))
#if not slurm_time is None:
# fout.write('#SBATCH --time={}\n'.format(slurm_time))
#
fout.write('#\n# sbatch script written by AM4py.py, {}\n#\n'.format(dtm.datetime.now()))
#
# Module swill be platform dependent. We could handle this section with JSON
#. if we wanted to.
fout.write('#\nmodule purge\n#\n')
#
for m in self.modules:
fout.write('module load {}\n'.format(m))
#
fout.write('#\n#\n')
# Universal??? My guess is we can impprove performance by increasing these values on bigger
#. memory machines.
# not sure about OMP_THREADS really, but it's worth a shot...
fout.write('export OMP_THREADS=1\n\n')
# these probably need to be parameterized somehow, or included in a template... or otherwise
#. we need to figure out what they should be. I just copied them from GFDL sample scripts.
fout.write('export KMP_STACKSIZE=512m\n')
fout.write('export NC_BLKSZ=1M\n')
fout.write('export F_UFMTENDIAN=big\n')
#
# executable will be pretty system/build dependent. The bin/exe format does not work well for containers, so
# let's just force the _EXE variable to be the actual execuable command.
#fout.write('EXECUTABLE=${AM4_GFDL_BIN}/${AM4_GFDL_EXE}\n')
#fout.write('EXECUTABLE=${AM4_GFDL_EXE}\n')
#
# We can probably make this part pretty universal as well...
fout.write('#\nulimit -s unlimited\n#\n')
fout.write('#\ncd {}\n#\n'.format(self.work_dir))
fout.write('#\n#\n')
#
# NOTE: I don't think we can use threads anyway, so let's just not allow it here.
# we'll probaly need to go back and force it to 1 above as well.
# fout.write('MPI_COMMAND=\"{} {}{} {}{} ${{EXECUTABLE}}\"\n#\n'.format(mpi_exec['exec'],
# mpi_exec['ntasks'], self.n_tasks,
# mpi_exec['cpu_per_task'], self.n_threads))
# TODO:
# for containers, we need to bind the data directory (--bind {data_dir}:{container_mount_point}. So this needs to get
# reworked a bit. We should probably put more logic into the Python script, as opposed to constructing
# the execute command in env. variables and module. Maybe provide more information internally, like:
# $AM4_CONTAINER_PATH, then, if var, do container logicl...
if self.am4_container_pathname is None:
mpi_command = '{} {}{} {}'.format(mpi_exec['exec'],
mpi_exec['ntasks'], self.n_tasks, self.am4_exe)
#fout.write('MPI_COMMAND=\"{} {}{} ${{AM4_GFDL_EXE}}\"\n#\n'.format(mpi_exec['exec'],
# mpi_exec['ntasks'], self.n_tasks)
# )
else:
# There is a container:
#
mpi_command = '{} {}{} {} exec {} {}'.format(mpi_exec['exec'], mpi_exec['ntasks'], self.n_tasks,
container_exe, self.am4_container_pathname, self.am4_exe
)
#
fout.write('echo "{}"\n'.format(mpi_command))
fout.write('#\n#\n')
fout.write('{}\n'.format(mpi_command))
fout.write('#\n')
#fout.write('echo ${MPI_COMMAND}\n')
#
#fout.write('${MPI_COMMAND}\n\n')
#
# add an error-check:
for ln in ['if [[ $? -ne 0 ]]; then', 'echo "ERROR: Run failed." 1>&2',
'"ERROR: Output from run in {}/fms.out ... or maybe in a log file" 1>&2'.format(self.work_dir),
'exit 1', 'fi' ]:
fout.write('{}\n'.format(ln))
#
#
xx = subprocess.run('chmod 755 {}'.format(fname_out).split(), check=True, capture_output=True)
#
#
def get_AM4_layouts(n_tasks=24):
'''
# compute possible layouts. Include (some) error checking for valid n_tasks?
'''
# get all integer factor pairs:
# TODO: handle this exceptional case better:
if n_tasks==1:
return numpy.array([[1,1]])
#
return numpy.array(sorted([(k,int(n_tasks/k)) for k in range(1, int(numpy.ceil(n_tasks**.5)))
if n_tasks%k==0],
key = lambda rw: numpy.sum(rw)))
#
#
def get_AM4_io_layouts(layout):
'''
# AM4 io_layouts. the second "y" term must be an integer factor of the "y" term of the input layout.
#. Don't yet understand the first term, so for now let's limit it to 1.
'''
#
return numpy.array(sorted([(1,int(layout[1]/k)) for k in range(1, int(numpy.ceil(layout[1]**.5)))
if layout[1]%k==0],
key=lambda rw:numpy.sum(rw)))
#
def is_true(s):
if str(s).lower() in ['none', 'null','', ' ']:
return None
if str(s).lower() in ['true', '1', 't', 'y', 'yes', 'yeah', 'yup', 'certainly', 'uh-huh']:
return True
else:
return False