-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoise_audio.py
85 lines (64 loc) · 2.59 KB
/
denoise_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Audio Denoising
# Author: Long Nguyen-Vu & ChatGPT, code adapted from https://github.com/AP-Atul/Audio-Denoising/tree/master
# Date: 2023-06-15
import pywt
import librosa
from tqdm import tqdm
import soundfile as sf
import numpy as np
def mad(arr):
""" Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation
"""
arr = np.ma.array(arr).compressed()
med = np.median(arr)
return np.median(np.abs(arr - med))
class DeNoise:
"""
process the input signal to remove noise
inputSignal: np.ndarray
outputSignal: np.ndarray
sample_rate: 16000
"""
def __init__(self, inputSignal):
self.inputSignal = inputSignal
self.outputSignal = None
def process(self, sr=16000) -> np.ndarray:
inputSignal = self.inputSignal
rate = sr
duration = librosa.get_duration(y=inputSignal, sr=sr)
output_signal = []
block_size = int(rate * duration * 0.10) # Block size as 10% of the duration
for block_start in tqdm(range(0, len(inputSignal), block_size)):
block_end = block_start + block_size
block = inputSignal[block_start:block_end]
coefficients = pywt.wavedec(block, 'db4', mode='per', level=2)
# Getting variance of the input signal
sigma = mad(coefficients[-1])
# VISU Shrink thresholding by applying the universal threshold proposed by Donoho and Johnstone
thresh = sigma * np.sqrt(2 * np.log(len(block)))
# Thresholding using the noise threshold generated
coefficients[1:] = (pywt.threshold(i, value=thresh, mode='soft') for i in coefficients[1:])
# Getting the clean signal as in the original form
clean = pywt.waverec(coefficients, 'db4', mode='per')
output_signal.extend(clean)
return np.array(output_signal)
"""
# Test
# TODO soundfile.py", line 1021, in write assert written == len(data) AssertionError
# but we can still get the output file.
# np.seterr(divide='ignore', invalid='ignore')
def read_audio_file(file_path):
audio_data, _ = sf.read(file_path)
return audio_data
def save_audio_file(signal, file_path, sample_rate=16000):
sf.write(file_path, signal, sample_rate)
file_path = './vinyl.wav'
inputSignal = read_audio_file(file_path)
print(len(inputSignal))
deNoiser = DeNoise(inputSignal)
outputSignal = deNoiser.process()
print(len(outputSignal))
save_audio_file(outputSignal, file_path='./test.test/vinyl_denoised.flac')
"""