-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanaliza.py
252 lines (205 loc) · 8.33 KB
/
analiza.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python
from __future__ import print_function, division, unicode_literals
import h5py
import numpy as np
from lxml import etree
import sys
from scipy.constants import Avogadro
NA = Avogadro*1e-23
spine = ['PSD', 'head', 'neck']
def nano_molarity(N, V):
return 10 * N / V / NA
def pico_sd(N, S):
return 10 * N / S / NA
def get_grid_list(My_file):
return np.array(My_file['model']['grid'])
def get_times(My_file, trial='trial0', output="__main__"):
return np.array(My_file[trial]['output'][output]['times'])
def get_outputs(my_file):
return my_file['model']['output'].keys()
def get_populations(my_file, trial='trial0', output='__main__'):
return np.array(my_file[trial]['output'][output]['population'])
def get_all_species(My_file, output="__main__"):
return [s.decode('utf-8') for s in My_file['model']['output'][output]['species']]
def get_all_anchored_species(root):
all_species = []
for son in root:
if son.tag.endswith('ReactionScheme'):
for grandson in son:
if grandson.tag.endswith('Specie'):
if not float(grandson.get("kdiff")):
all_species.append(grandson.get('id'))
return list(set(all_species))
def get_all_submembrane_species(my_file):
root = etree.fromstring(my_file['model']['serialized_config'][0])
all_anchored_species = get_all_anchored_species(root)
anchored = []
for son in root:
if son.tag.endswith('InitialConditions'):
for grandson in son:
if grandson.tag.endswith("SurfaceDensitySet"):
for grandgrandson in grandson:
name = grandgrandson.get("specieID")
if name in all_anchored_species:
anchored.append(name)
return list(set(anchored))
def get_output_regions(my_file):
root = etree.fromstring(my_file['model']['serialized_config'][0])
outputs = {}
for son in root:
if son.tag.endswith('OutputScheme'):
for grandson in son:
outputs[grandson.get("filename")] = grandson.get("region")
return outputs
def get_key(cell):
return cell[15].decode('utf-8') + '_' + cell[18].decode('utf-8')
def region_volumes(my_file):
grid_list = get_grid_list(my_file)
regions = get_regions(my_file)
volumes = {}
for region in regions:
volumes[region] = 0
for cell in grid_list:
key = get_key(cell)
volumes[key] += float(cell[12])
return volumes
def sum_volume(my_file, region_list):
grid_list = get_grid_list(my_file)
vol_sum = 0
volumes = region_volumes(my_file)
for region in region_list:
if region in volumes:
vol_sum += volumes[region]
return vol_sum
def sum_indices(my_file, region_list):
reg_indices = get_region_indices(my_file)
sum_indices = []
for region in region_list:
if region in reg_indices:
sum_indices += reg_indices[region]
return sum_indices
def region_surface(grid_list, direction=0):
submembrane_regions = []
submembrane_regions_dict = {}
for i, cell in enumerate(grid_list):
if cell[17] == b'submembrane':
if cell[15] not in submembrane_regions:
submembrane_regions.append(cell[15])
submembrane_regions_dict[cell[15]] = []
submembrane_regions_dict[cell[15]].append(i)
surface = {}
for key in submembrane_regions_dict:
surface[key] = 0
for cell_idx in submembrane_regions_dict[key]:
if direction == 0:
depth = grid_list[cell_idx][13]
width = abs(grid_list[cell_idx][0] - grid_list[cell_idx][3])
surface[key] += depth * width
else:
print('Unimplemented direction', direction)
return surface
def get_region_indices(my_file):
grid_list = get_grid_list(my_file)
region_ind = {}
for idx, cell in enumerate(grid_list):
key = get_key(cell)
if key not in region_ind:
region_ind[key] = []
region_ind[key].append(idx)
return region_ind
def get_spines(regions):
out = {}
for region in regions:
try:
end = region.split("_")[1]
except IndexError:
continue
if end == "":
continue
if end in out:
out[end].append(region)
else:
out[end] = [region]
return out
def get_regions(my_file):
grid_list = get_grid_list(my_file)
return sorted(list(set([get_key(grid) for grid in grid_list])))
def get_concentrations_region_list(my_file, my_list, trial, out):
grid_list = get_grid_list(my_file)
species = get_all_species(my_file)
idxs = sum_indices(my_file, my_list)
vol = sum_volume(my_file, my_list)
data = get_populations(my_file, trial=trial, output=out)
numbers = data[:, idxs, :].sum(axis=1)
return nano_molarity(numbers, vol)
def get_concentrations(my_file, trial, out):
grid_list = get_grid_list(my_file)
data = get_populations(my_file, trial=trial, output=out)
species = get_all_species(my_file, output=out)
regions = get_regions(my_file)
submembrane_species = get_all_submembrane_species(my_file)
volume_dict = region_volumes(my_file)
surface_dict = region_surface(grid_list)
concentrations = np.zeros((data.shape[0], len(regions), len(species)))
numbers = np.zeros_like(concentrations)
region_indices = get_region_indices(my_file)
for i, reg in enumerate(regions):
# get numbers
numbers[:, i, :] = data[:, region_indices[reg], :].sum(axis=1)
if reg in surface_dict:
for j, specie in enumerate(species):
if specie in submembrane_species:
concentrations[:, i, j] = pico_sd(numbers[:, i, j],
surface_dict[reg])
else:
concentrations[:, i, j] = nano_molarity(numbers[:, i, j],
volume_dict[reg])
else:
concentrations[:, i, :] = nano_molarity(numbers[:, i, :],
volume_dict[reg])
return concentrations
def save_single_file(times, concentrations, species, fname):
header = 'time'
for specie in species:
header += ' ' + specie
what_to_save = np.zeros((concentrations.shape[0], len(species) + 1))
what_to_save[:, 0] = times[:concentrations.shape[0]]
what_to_save[:, 1:] = concentrations
print(fname)
np.savetxt(fname, what_to_save, header=header, comments='')
def save_concentrations(my_file, fname_base, output, trial='trial0'):
regions = get_regions(my_file)
times = get_times(my_file, trial=trial, output=output)
species = get_all_species(my_file, output=output)
concentrations = get_concentrations(my_file, trial, output)
if output == '__main__':
add = ''
else:
add = output + '_'
for i, region in enumerate(regions):
fname = '%s_%s%s_%s.txt' % (fname_base, add, trial, region)
save_single_file(times, concentrations[:, i, :], species, fname)
if len(regions) > 1:
totals = get_concentrations_region_list(my_file, regions, trial, output)
save_single_file(times, totals, species, '%s_%s%s_%s.txt' % (fname_base, add, trial, 'total'))
spines_dict = get_spines(regions)
for spine_name in spines_dict.keys():
spine_reg = spines_dict[spine_name]
spine = get_concentrations_region_list(my_file, spine_reg,
trial, output)
save_single_file(times, spine, species,
'%s_%s%s_%s.txt' % (fname_base, add,
trial, spine_name))
if __name__ == '__main__':
if len(sys.argv) == 1:
sys.exit('No filename given')
for fname in sys.argv[1:]:
my_file = h5py.File(fname, 'r')
output_dict = get_output_regions(my_file)
for trial in my_file.keys():
if trial != 'model':
save_concentrations(my_file, fname[:-3], '__main__', trial=trial)
for out in output_dict:
if output_dict[out] is None:
save_concentrations(my_file, fname[:-3], out, trial=trial)
print('Done')