-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSequenceTask.py
393 lines (368 loc) · 22.7 KB
/
SequenceTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 5 13:39:14 2020
@author: kblackw1
"""
import numpy as np
import sequence_env as task_env
import agent_twoQtwoSsplit as QL
import RL_utils as rlu
##########################################################
class RL:
"""Reinforcement learning by interaction of Environment and Agent"""
def __init__(self, environment, agent, states,actions,R,T,Aparams,Eparams,oldQ={},printR=False):
"""Create the environment and the agent"""
self.env = environment(states,actions,R,T,Eparams,printR)
#self.agent = agent(self.env.T.keys(), self.env.actions,Aparams,oldQ)
self.agent = agent(self.env.actions,Aparams,oldQ)
self.vis = True # visualization
self.name=None
self.results={'state': [], 'reward':[],'action':[]}
def episode(self, tmax=50,noise=0,cues=[],info=False):
state = self.env.start() #state tuple, (0,0) to start
reward=0
action = self.agent.start(state,cues)
self.append_results(action,reward)
# Repeat interaction
if info:
print('start episode, from Q=', self.agent.Q,'\nresults',self.results)
for t in range(1, tmax+1):
reward, state = self.env.step(action,prn_info=info) #determine new state and reward from env
#print('t=',t,'state',state,'=',self.env.state_from_number(state),'reward=',reward)
action = self.agent.step(reward, state, noise,cues=cues,prn_info=info) #determine next action from current state and reward
self.append_results(action,reward)
return
def append_results(self,action,reward):
self.results['state'].append(self.env.state)
self.results['reward'].append(reward)
self.results['action'].append(action)
def visual(self,title=None):
"""Visualize state,action,reward of an eipsode"""
import matplotlib.pyplot as plt
plt.ion()
fig,ax=plt.subplots(nrows=3,ncols=1,sharex=True)
if title is not None:
fig.suptitle(title)
xvals=np.arange(len(self.results['reward']))
for i,key in enumerate(['reward','action']):
ax[i].plot(xvals,self.results[key], label=key)
ax[i].set_ylabel(key)
ax[i].legend()
ax[-1].set_xlabel('time')
offset=0.1
for i,((st,lbl),symbol) in enumerate(zip(self.env.state_types.items(),['k.','bx'])):
yval=[s_tup[st]+i*offset for s_tup in self.results['state']]
ax[2].plot(xvals,yval,marker=symbol[-1],color=symbol[0],label=lbl,linestyle='None')
ax[2].set_ylabel('state')
ax[2].legend()
def state_to_words(self,nn,noise,hx_len):
env_states=[];env_st_num=[]
env_bits=len(self.env.states.keys())
for st in self.agent.ideal_states[nn].values():
env_st_num.append([np.round(si,1) for si in st])
env_states.append([])
for si in st:
env_states[-1].append('--')
for ii,st in enumerate(env_st_num):
for jj,si in enumerate(st[0:env_bits]):
key=list(self.env.states.keys())[jj]
if np.abs(int(si))-np.abs(si)<=noise and int(np.round(si)) in self.env.states[key].values():
env_states[ii][jj]=list(self.env.states[key].keys())[list(self.env.states[key].values()).index(int(np.round(si)))][0:hx_len]
for jj,si in enumerate(st[env_bits:]):
env_states[ii][jj+env_bits]=str(si)
return env_states
def set_of_plots(self,numQ,noise,hx_len,title2='',hist=False):
import matplotlib.pyplot as plt
plt.ion()
self.visual(numQ+'Q'+title2) #differs from RL_TD2Q in parameter numQ vs learn_phase , and using hx_len
for ii in range(len(self.agent.Q)):
self.agent.visual(self.agent.Q[ii],labels=self.state_to_words(ii,noise,hx_len),
title=numQ+'Q, Q'+str(ii+1))
if hist:
self.agent.plot_learn_history(title=numQ+'Q, Q'+str(ii+1))
def get_statenum(self,state): ####### Not part of RL_TD2Q
if state[0] in self.env.states['loc']:
state0num=self.env.states['loc'][state[0]]
else:
state0num=-1 #this occurs if wildcard specified as action
#wildcard can be used to specify location or a characteri in press_hx
#If wildcard is used, need to find all possible matching states
matching_state1=[]
if state[1] in self.env.states['hx']:
state1num=self.env.states['hx'][state[1]]
else:
state1num=-1
#star_index=state[1].find('*')#will only find first occurrence
star_index=[i for i, letter in enumerate(state[1]) if letter =='*']
#list of possible matching states to *LL
for st in self.env.states['hx']:
if np.all([state[1][i]==st[i] for i in range(len(st)) if i not in star_index]):
matching_state1.append(st)
return state0num,state1num,matching_state1
def count_actions(self,allresults,sa_combo,event_subset,accum_type='mean'): ####### Not part of RL_TD2Q
#2021 jan 4: added multiply reward by events_per_trial to get mean reward per trial
trial_subset=event_subset/self.agent.events_per_trial
for sa in sa_combo:
state=sa[0]
anum=self.env.actions[sa[1]]
state0num,state1num,matching_state1=self.get_statenum(state)
#count how many times that state=state and action=action
#print('sa',sa,'matching states',matching_state1)
timeframe={'Beg':range(event_subset),'End':range(-event_subset,0)}
actions=np.array(self.results['action'])
for tf,trials in timeframe.items():
sa_count=0
action_indices=np.where(actions[trials]==anum)[0]+trials[0] #indices with correct actions
#for tr in trials:
for tr in action_indices:
#if self.results['action'][tr]==anum:
#count number of times that agent state is state0 and state1
if (state[0]=='*' or self.results['state'][tr][0]==state0num) and \
(self.results['state'][tr][1]==state1num or self.env.state_from_number(self.results['state'][tr])[1] in matching_state1):
sa_count+=1
allresults[sa][tf].append(sa_count/trial_subset) #events per trial, fraction of responses in specified number of events
if accum_type=='count':
max_rwd=np.max(self.results['reward'])
allresults['rwd']['Beg'].append(self.results['reward'][0:event_subset].count(max_rwd))/trial_subset #number of rewards per trial
allresults['rwd']['End'].append(self.results['reward'][-event_subset:].count(max_rwd))/trial_subset #maximum = 1
else:
allresults['rwd']['Beg'].append(np.mean(self.results['reward'][0:event_subset])*self.agent.events_per_trial) #mean reward per trial
allresults['rwd']['End'].append(np.mean(self.results['reward'][-event_subset:])*self.agent.events_per_trial)
return allresults
def trajectory(self,traject,sa_combo, num_blocks,events_per_block,numQphs,accum_type='mean'): #differs from RL_TD2Q
for sa in sa_combo:
if sa=='rwd':
if accum_type=='count':
max_rwd=np.max(self.results['reward'])
traject[numQphs]['rwd'].append([self.results['reward'][block*events_per_block:(block+1)*events_per_block].count(max_rwd) for block in range(num_blocks)]) #rewards per block
else:
traject[numQphs]['rwd'].append([self.agent.events_per_trial*np.mean(self.results['reward'][block*events_per_block:(block+1)*events_per_block]) for block in range(num_blocks)])
else:
anum=self.env.actions[sa[1]]
state=sa[0]
state0num,state1num,matching_state1=self.get_statenum(state)
block_count=[]
for block in range(num_blocks):
sa_count=0
for tr in range(block*events_per_block,(block+1)*events_per_block):
if self.results['action'][tr]==anum:
#count number of times that agent state is state0 and state1
if (state[0]=='*' or self.results['state'][tr][0]==state0num) and \
(self.results['state'][tr][1]==state1num or self.env.state_from_number(self.results['state'][tr])[1] in matching_state1):
sa_count+=1
block_count.append(sa_count)
traject[numQphs][sa].append(block_count)
return traject
def accum_Qhx(states,actions,rl,numQ,Qhx=None):
#find the state number corresponding to states for each learning phase
state_nums={state: {q: [] for q in range(numQ)} for state in states}
for q in range(numQ):
int_ideal_states=[(int(v[0]),int(v[1])) for v in rl.agent.ideal_states[q].values()]
int_ideal_state1=[int(v[1]) for v in rl.agent.ideal_states[q].values()]
for state in states:
st0,st1,matching_states=rl.get_statenum(state)
if len(matching_states)==0 and st1>-1:
matching_states=[state[1]]
for ms in matching_states:
hx_num=rl.env.states['hx'][ms]
if st0>-1:
if (st0,hx_num) in int_ideal_states:
qindex=int_ideal_states.index((st0,hx_num))
state_nums[state][q].append((state[0]+','+ms,qindex))
#print(state,',match:', ms,',num',st0,hx_num,'in Q:',qindex)
#else:
#print(state,',match:', ms,',num',st0,hx_num,'Not found')
else:
qindices=np.where(np.array(int_ideal_state1)==hx_num)[0]
#print(state,',match:', ms,',num',st0,hx_num,'in Q:',qindices)
for qnum in qindices:
state_pair=list(int_ideal_states[qnum])
state_words=rl.env.state_from_number(state_pair)
state_nums[state][q].append((state_words[0][0:3]+','+ms,qnum))
if not Qhx:
Qhx={st:{q:{ph[0]:{ac:[] for ac in actions} for ph in state_nums[st][q]} for q in state_nums[st].keys()} for st in state_nums.keys()}
for st in state_nums.keys():
for qv in state_nums[st].keys():
for (ph,qindex) in state_nums[st][qv]:
if ph in Qhx[st][qv].keys(): #not all states are visited each run
for ac in actions.keys():
Qhx[st][qv][ph][ac].append(rl.agent.Qhx[qv][:,qindex,rl.agent.actions[ac]])
else:
Qhx[st][qv][ph]={ac:[] for ac in actions}
for ac in actions.keys():
Qhx[st][qv][ph][ac].append(rl.agent.Qhx[qv][:,qindex,rl.agent.actions[ac]])
#need to return state_nums? which may differ for each run
return Qhx,state_nums
##########################################################
if __name__ == "__main__":
from SequenceTaskParam import Hx_len,rwd
from SequenceTaskParam import params,states,act
from SequenceTaskParam import Tloc,R,env_params
numtrials=600 # 450 #
runs=15
#If want to add reward and time since reward to cues, need to divide by ~100
noise=0.01 #make noise small enough or state_thresh small enough to minimize new states in acquisition
#control output
printR=False #print environment Reward matrix
Info=False #print information for debugging
plot_hist=0#1: plot Q, 2: plot the time since last reward
other_plots=True
save_data=True #write output data in npz file
Qvalues=[1,2] #simulate using these values for numQ, make this [2] to simulate inactivation
inactivate=None #set to None to skip the inactivation test at the end 'D1', 'D2'
inactivate_blocks=0# 1 or 3 for inactivate = 'D1' or 'D2', 0 otherwise
########## Plot Q values over time for these states and actions
plot_Qhx=True
actions_colors={'goL':'r','goR':'b','press':'k','goMag':'grey'}
if Hx_len==3:
#MINIMUM actions for reward = 6, so maximum rewards = 1 per 6 "trials"
state_action_combos=[(('*','*LL'), 'goR'),(('Rlever','*LL'),'press'),(('Rlever','LLR'),'press')]
elif Hx_len==4:
#MINIMUM actions for reward = 7, so maximum rewards = 1 per 7 "trials"
state_action_combos=[(('Llever','---L'), 'press'),(('Llever','**RL'), 'press'),(('Llever','**LL'), 'goR'),(('Rlever','**LL'),'press'),(('Rlever','*LLR'),'press'),(('Rlever','LLRR'),'goMag')]
overstay=[(('Llever','**LL'), act) for act in ['goL','goMag','press','other']]+\
[(('Rlever','LLRR'),act) for act in ['goL','goR','press','other']] #'**LL' instead of --LL
premature=[(('Llever','**RL'), act) for act in ['goL','goR','goMag','other']]+\
[(('Rlever','**RL'), act) for act in ['goR','goMag','other','press']]+\
[(('Llever','---L'), act) for act in ['goL','goR','goMag','other']]+\
[(('Rlever','---L'), act) for act in ['goR','goMag','other','press']]+\
[(('Rlever','*LLR'), act) for act in ['goL','goR','goMag','other']] #'*LLR' instead of -LLR
start=[(('mag','----'), act) for act in ['goL','goR','goMag','press','other']]
state_action_combos=state_action_combos+overstay+premature+start
sa_errors={'stay':overstay,'switch':premature,'start':start}
else:
print('unrecognized press history length')
plot_Qstates=[state[0] for state in state_action_combos]
numevents=numtrials*params['events_per_trial'] #number of events/actions allowed for agent per run/trial
trial_subset=int(0.05*numtrials)*params['events_per_trial']# display mean reward and count actions over 1st and last of these number of trials
epochs=['Beg','End']
trials_per_block=10
events_per_block=trials_per_block* params['events_per_trial']
num_blocks=int((numevents+1)/events_per_block)
#optionally add blocks of runs with D1 or D2 inactivated
#update some parameters
params['distance']='Euclidean'
params['wt_learning']=False
params['decision_rule']=None #'delta'#'combo', 'delta', 'sumQ2', None means use choose_winner
params['Q2other']=0.0 #heterosynaptic syn plas of Q2 for other actions
params['forgetting']=0#0.2 #heterosynaptic decrease Q1 for other actions
params['beta_min']=0.5#params['beta'] #0.1 is only slightly worse#
params['beta']=3
params['gamma']=0.95
params['beta_GPi']=10
params['moving_avg_window']=3
params['initQ']=-1 #-1 means do state splitting. If initQ=0, 1 or 10, it means initialize Q to that value and don't split
params['D2_rule']= None #'Ndelta' #'Bogacz' #'Opal'### Opal: use Opal update without critic, Ndelta: calculate delta for N matrix from N values
params['rwd']=rwd['reward']
#lower means more states
state_thresh={'Q1':[0.75,0],'Q2':[0.75,0.875]} #without normalized ED, with heterosynaptic LTP
state_thresh={'Q1':[0.75,0],'Q2':[0.75,0.625]} #or st2= 0.875 with normalized ED, with heterosynaptic LTD
alpha={'Q1':[0.2,0],'Q2':[0.2,0.35]}
#params['state_thresh']=[0.25,0.275]#[0.15,0.2] #threshold on prob for creating new state using Gaussian mixture
# higher means more states. Adjusted so that in new context, Q2 creates new states, but not Q1
#params['alpha']=[0.3,0.15] # [0.2,0.14] # double learning to learn in half the trials, slower for Q2 - D2 neurons
output_data={q:{} for q in Qvalues}
all_Qhx={q:[] for q in Qvalues}
all_beta={q:[] for q in Qvalues}
all_lenQ={q:{qq:[] for qq in range(1,q+1)} for q in Qvalues}
numchars=6
state_subset=['RRLL','RLLR']
params['events_per_block']=events_per_block
params['trials_per_block']=trials_per_block
params['trial_subset']=trial_subset
params['inact']=inactivate
params['inact_blocks']=inactivate_blocks
sa_keys=rlu.construct_key(state_action_combos +['rwd'],epochs)
results={numQ:{sa:{'Beg':[],'End':[]} for sa in state_action_combos+['rwd']} for numQ in Qvalues}
resultslist={numQ:{k+'_'+ep:[] for k in sa_keys.values() for ep in epochs} for numQ in Qvalues}
traject_dict={numQ:{k:[] for k in sa_keys.keys()} for numQ in Qvalues}
for numQ in Qvalues:
resultslist[numQ]['params']={p:[] for p in params}
Qhx=None
for r in range(runs):
params['numQ']=numQ
params['state_thresh']=state_thresh['Q'+str(numQ)]
params['alpha']= alpha['Q'+str(numQ)]
if runs==1:
print('&&&&&&&&&&&&&&&&&&&& STATES',states,'\n **** R:',R.keys(),'\n **** T:',Tloc.keys())
######### acquisition trials, context A, only 6 Khz + L turn allowed #########
acq = RL(task_env.separable_T, QL.QL, states,act,R,Tloc,params,env_params,printR=printR)
acq.episode(numevents,noise=noise,info=Info)
if params['inact'] and numQ==2:
if params['inact']=='D2':
acq.agent.Q[1]=np.zeros(np.shape(acq.agent.Q[1]))
acq.agent.alpha[1]=0
#acq.agent.numQ=1
params['Da_factor']=acq.agent.Da_factor=0.5
elif params['inact']=='D1':
acq.agent.Q[0]=np.zeros(np.shape(acq.agent.Q[0]))
acq.agent.alpha[0]=0
params['Da_factor']=acq.agent.Da_factor=2
acq.episode(events_per_block*params['inact_blocks'],noise=noise,info=Info)
#acq.set_of_plots('LLRR, numQ='+str(params['numQ']),noise,Hx_len,hist=plot_hist)
results[numQ]=acq.count_actions(results[numQ],state_action_combos,trial_subset,accum_type='mean')#,accum_type='count')
traject_dict=acq.trajectory(traject_dict, sa_keys,num_blocks+params['inact_blocks'],events_per_block,numQ,accum_type='mean')#,accum_type='count')
if r<1 and other_plots:
acq.set_of_plots(str(numQ),noise,Hx_len,title2='',hist=plot_hist)
#acq.visual()
if plot_Qhx: #need to return state_nums, which may differ for each run
Qhx,state_nums=accum_Qhx(plot_Qstates,actions_colors,acq,params['numQ'],Qhx)
#del acq #to free up memory
print('numQ=',numQ,', run',r,'Q0 mat states=',len(acq.agent.Q[0]),'alpha',acq.agent.alpha)
all_beta[numQ].append(acq.agent.learn_hist['beta'])
for qq in all_lenQ[numQ].keys():
if qq-1 in acq.agent.learn_hist['lenQ'].keys():
all_lenQ[numQ][qq].append(acq.agent.learn_hist['lenQ'][qq-1])
all_Qhx[numQ]=Qhx
resultslist=rlu.save_results(results,sa_keys,resultslist)
for p in resultslist[numQ]['params'].keys(): #
resultslist[numQ]['params'][p].append(params[p]) #
for ta in traject_dict[numQ].keys():
output_data[numQ][ta]={'mean':np.mean(traject_dict[numQ][ta],axis=0),'sterr':np.std(traject_dict[numQ][ta],axis=0)/np.sqrt(runs-1)}
print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
print(' Using',params['numQ'], 'Q, alpha=',params['alpha'],'thresh',params['state_thresh'], 'runs',runs,'of total events',numevents)
print(' weights:',[k+':'+str(params[k]) for k in params.keys() if k.startswith('wt')])
print('Q2 hetero=',params['Q2other'],'decision rule=',params['decision_rule'],'beta=',params['beta_min'],params['beta'])
print('counts from ',trial_subset,' events: BEGIN END std over ',runs,'runs. Hx_len=',Hx_len)
norm={sac:100 for sac in results[numQ].keys()}
norm['rwd']=1
for sa_combo,counts in results[numQ].items():
print(sa_combo,':::',np.round(np.mean(counts['Beg'])*norm[sa_combo],2),'% +/-',np.round(np.std(counts['Beg'])*norm[sa_combo],2),
',', np.round(np.mean(counts['End'])*norm[sa_combo],2),'% +/-',np.round(np.std(counts['End'])*norm[sa_combo],2))
if other_plots:
for i in range(params['numQ']):
acq.agent.visual(acq.agent.Q[i],labels=acq.state_to_words(i,noise,numchars),title='numQ='+str(numQ)+',Q'+str(i),state_subset=state_subset)
if save_data:
import datetime
dt=datetime.datetime.today()
date=str(dt).split()[0]
key_params=['numQ','Q2other','beta_GPi','decision_rule','beta_min','beta','gamma','rwd']
fname_params=key_params+['initQ']
fname='Sequence'+date+'_'.join([k+str(params[k]) for k in fname_params])
#fname='Sequence'+date+'_HxLen'+str(Hx_len)+'_alpha'+'_'.join([str(a) for a in params['alpha']])+'_st'+'_'.join([str(st) for st in params['state_thresh']])+\
if params['inact']:
fname=fname +'_inactive'+params['inact']+'_'+str(params['Da_factor'])
np.savez(fname,par=params,results=resultslist[numQ],traject=output_data[numQ],Qhx=all_Qhx[numQ],all_beta=all_beta[numQ],all_lenQ=all_lenQ[numQ],sa_errors=sa_errors)
allQ={i:acq.agent.Q[i] for i in range(params['numQ'])}
all_labels={i:acq.state_to_words(i,noise,numchars) for i in range(params['numQ'])}
actions=acq.agent.actions
print('\nsummary for beta_min=',params['beta_min'],'beta_max=',params['beta'],'beta_GPi=', params['beta_GPi'],'gamma=',params['gamma'])
for numQ in Qvalues:
halfrwd=(np.max(output_data[numQ]['rwd']['mean'])+np.min(output_data[numQ]['rwd']['mean']))/2
####### replace this with 90% of maximal to measure effect of beta? #############
block=np.min(np.where(output_data[numQ]['rwd']['mean']>halfrwd))
print('rwd End',':::',round(np.mean(results[numQ]['rwd']['End'])*norm['rwd'],2), \
'per trial, +/-',round(np.std(results[numQ]['rwd']['End'])*norm['rwd'],2), \
', blocks to half reward=',block, 'for nQ=', numQ)
#
title='History Length '+str(Hx_len)+'\nminimum '+str(params['events_per_trial'])+' actions per reward'
if other_plots:
rlu.plot_trajectory(output_data,title,[Qvalues])
if plot_Qhx:
plot_states=[('Llever','--LL'),('Rlever','-LLR'),('Rlever','LLRR')]#[('Llever','RRLL'),('Rlever','LLLL'),('Rlever','RLLR'),('Rlever','RRLL')]
actions_lines={a:'solid' for a in actions_colors.keys()}
from TD2Q_Qhx_graphs import plot_Qhx_sequence, plot_Qhx_sequence_1fig
figs=plot_Qhx_sequence_1fig (all_Qhx,plot_states,actions_colors,params['events_per_trial'],actions_lines)
#for numQ,Qhx in all_Qhx.items():
#figs=plot_Qhx_sequence(Qhx,actions_colors,params['events_per_trial'],numQ)
#figs=plot_Qhx_sequence_1fig (Qhx,plot_states,actions_colors,params['events_per_trial'])