-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_analysis.m
182 lines (159 loc) · 6.08 KB
/
cluster_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function [p, cluster_bin] = cluster_analysis(input,inputA, inputB, flag, one_vs_two_sided)
% input: matrix of size # subjects x # time points, already averaged across
% trials; either define "input", if there is only 1 group to be tested against
% zero, or define both "inputA" and "inputB", if two groups are to be compared
% against each other
% flag = 1 for single-group tests or repeated-measures tests (2 groups); flag = 2 for two independent
% groups;
% one_vs_two_sided = 1 for one-tailed and = 2 for two-tailed tests;
% for one-tailed tests, the condition with the higher hypothesized value
% has to be defined as inputA
% flag = 3 for trial permutation (disabled, since not yet debugged). matrix of size # subjects x # trials x #
% time points
if one_vs_two_sided == 1
t_thresh = 1.64;
%t_thresh = 1.28;
elseif one_vs_two_sided == 2
t_thresh = 1.96;
%t_thresh = 1.64;
end
nb_permuts = 10000;
if flag == 1
if isempty(input)
input = inputA - inputB;
end
nb_subj = size(input,1);
nb_comps = power(2,nb_subj);
nb_greater = 0;
[test_stat_orig, cluster_bin, IX_max_cluster, cluster, signed_bin_t_thresh] = test_stat(input, [], [], flag, t_thresh, one_vs_two_sided);
for i = 1:nb_comps
binp = ones(nb_subj,1);
binp_part = -1 *round((dec2bin(i-1) == '1') -0.5);
binp(nb_subj-numel(binp_part)+1:nb_subj) = binp_part;
binp = repmat(binp,[1 size(input,2)]);
[test_stat_perm, ~, ~, ~, ~] = test_stat(binp .* input,[],[],flag, t_thresh, one_vs_two_sided);
nb_greater = nb_greater + (test_stat_perm > test_stat_orig);
end;
p = nb_greater/nb_comps;
elseif flag == 2
input = [inputA; inputB];
[diff_AB, cluster_bin, IX_max_cluster, cluster, signed_bin_t_thresh] = test_stat([], inputA, inputB, flag, t_thresh, one_vs_two_sided);
n_A = size(inputA,1);
n_B = size(inputB,1);
n_tot = n_A + n_B;
get_pot_resamps = nchoosek([1:size(input,1)],n_A);
A_resamp = [];
B_resamp = [];
diff_AB_permut = [];
for o = 1:nb_permuts
j = ceil(rand(1,1)*size(get_pot_resamps,1));
A_resamp(o,:,:) = input(get_pot_resamps(j,:),:);
keep_B = [1:size(input,1)];
for k = 1:size(A_resamp,2)
deleteIX = min(find(keep_B == get_pot_resamps(j,k)));
keep_B = [keep_B(1:deleteIX-1),keep_B(deleteIX+1:end)];
end
B_resamp(o,:,:) = input(keep_B,:);
[diff_AB_permut(o), ~, ~, ~, ~] = test_stat([], squeeze(A_resamp(o,:,:)), squeeze(B_resamp(o,:,:)), flag, t_thresh, one_vs_two_sided);
end
diff_AB_permut = diff_AB_permut;
p = length(find(diff_AB_permut >= diff_AB))/nb_permuts; %%% größer als, nicht größer gleich!!!!!
% elseif flag == 3
% rand('twister',sum(100*clock))
%
% diff_AB = test_stat([], squeeze(nanmean(inputA,2)), squeeze(nanmean(inputB,2)), flag, t_thresh, one_vs_two_sided)
%
% diff_AB_permut = [];
% for o = 1:nb_permuts
% r = 0;
%
% A_resamp = []; B_resamp = [];
% for nbsubj = 1:length(find(isnan(inputA(:,1,1))==0))
%
% inputA_proc = inputA(nbsubj,:,:);
% inputA_proc = inputA_proc(1,~isnan(inputA_proc(1,:,1)),:);
% inputB_proc = inputB(nbsubj,:,:);
% inputB_proc = inputB_proc(1,~isnan(inputB_proc(1,:,1)),:);
% input_proc = cat(2,inputA_proc, inputB_proc);
% n_A = size(inputA_proc,2);
% n_B = size(inputB_proc,2);
%
% resamp = [];
% while r < n_A
% pot_num = ceil(rand(1,1)*(n_A+n_B));
% if ~ismember(pot_num,resamp)
% resamp = [resamp, pot_num];
% r = r + 1;
% end
% end
% A_resamp(nbsubj,:) = squeeze(nanmean(input_proc(:,resamp,:),2));
% keep_B = [1:n_A + n_B];
% for k = 1:length(resamp)
% deleteIX = min(find(keep_B == resamp(k)));
% keep_B = [keep_B(1:deleteIX-1),keep_B(deleteIX+1:end)];
% end
% B_resamp(nbsubj,:) = squeeze(nanmean(input_proc(:,keep_B,:),2));
% end
% diff_AB_permut(o) = test_stat([], A_resamp, B_resamp, flag, t_thresh, one_vs_two_sided);
%
% end
%
% p = length(find(diff_AB_permut >= diff_AB))/nb_permuts; %%% größer als, nicht größer gleich!!!!!
% p
end
%%
function [max_cluster, max_cluster_bin, IX_max_cluster, cluster, signed_bin_t_thresh] = test_stat(input, inputA, inputB, flag, t_thresh, one_vs_two_sided)
if flag == 1
[~,~,~, stats] = ttest(input);
tval = stats.tstat;
elseif flag == 2
[~,~,~, stats] = ttest2(inputA,inputB);
tval = stats.tstat;
elseif flag == 3
[~,~,~, stats] = ttest(inputA-inputB);
tval = stats.tstat;
end
if one_vs_two_sided == 1
bin_t_thresh = tval > t_thresh;
elseif one_vs_two_sided == 2
bin_t_thresh = abs(tval) > t_thresh;
end
cluster = [];
bin_t_thresh = bin_t_thresh;
signed_bin_t_thresh = bin_t_thresh.*sign(tval);
for i = 1:length(bin_t_thresh)
if abs(signed_bin_t_thresh(i)) == 1
if i == 1
cluster(i) = 1;
elseif and(signed_bin_t_thresh(i-1) ~= 0,signed_bin_t_thresh(i-1) == signed_bin_t_thresh(i))
cluster(i) = cluster(i-1);
elseif and(signed_bin_t_thresh(i-1) ~= 0,signed_bin_t_thresh(i-1) ~= signed_bin_t_thresh(i))
cluster(i) = cluster(i-1) + 1;
elseif signed_bin_t_thresh(i-1) == 0
cluster(i) = max(cluster) + 1;
end
else
cluster(i) = 0;
end
end
count_cluster = max(cluster);
sum_t_clusters = [];
for i = 1:count_cluster
if one_vs_two_sided == 1
sum_t_clusters(i) = nansum(tval(cluster==i));
if sum_t_clusters(i) < 0
sum_t_clusters(i) = 0;
end
elseif one_vs_two_sided == 2
sum_t_clusters(i) = abs(nansum(tval(cluster==i)));
end
end
[max_cluster, IX_max_cluster] = max(sum_t_clusters);
if ~isempty(IX_max_cluster)
max_cluster_bin = cluster == IX_max_cluster;
else
max_cluster_bin = zeros(size(cluster,1),size(cluster,2));
end
if isempty(max_cluster)
max_cluster = 0;
end