-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRippleNeuroshareDemo1.m
423 lines (356 loc) · 15.1 KB
/
RippleNeuroshareDemo1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
% MATLAB Native Neuroshare API demo. Opens a neural recording and
% demonstrates various examples of how to access and visualize data
%
% For more information on the Neuroshare API see:
% http://neuroshare.sourceforge.net/index.shtml
%
% Ripple LLC 2011-2012
% Mohammad Raza
% Andrew Wilder
%
% This functin uses MATLAB cell mode. Matlab cells are paritioned with the
% double percent sign (%%). You can execute the code in a cell by moving
% the cursor to the cell and pressing CTRL-Enter
%
% Contact: [email protected]
function RippleNeuroshareDemo1(varargin)
% neuroshareDemo - Opens and plots data from a recording
%
% Usage:
% neuroshareDemo('recordingPath')
%
% Parameters:
% recordingPath A string that specifies the path to a recording. The
% recording can be a specific file or the base name of a set
% of files that all belong to the same recording.
%
% Remarks:
% Neural data from a single recording session may be stored in multiple
% files. In NEV recordings, for example, events and spikes are stored in a
% file with a .nev extension while continuous, analog data are stored in
% files with .ns* extensions where the * corresponds to the sampling
% period. The Neuroshare API is agnostic to file structure. In the MATLAB
% Native Neuroshare implementation, the default assmption is that a
% recording is split across multiple files. Thus when an individual file
% is passed as an argument, the ns_OpenFile() method checks the directory
% for other files from the same recording. If such files are found they are
% also opened. (NOTE: Files with the same base name are assumed to be from
% the same recording).
%
%% Neuroshare Exists
% Check to make sure neuroshare functions are in the MATLAB path
if ~exist('ns_CloseFile.m', 'file')
disp('WARNING => the neuroshare functions were not found in your MATLAB path.');
disp('looking in directory ../');
path(path, '../');
if exist('ns_CloseFile.m', 'file')
disp('This script found the neuroshare functions in ../');
else
disp('In a standard Trellis installation these functions are located in:');
disp(' <trellis_install_dir>/Tools/matlab/neuroshare>');
end
% add the path as it is in SVN
path(path, '..');
if ~exist('ns_CloseFile.m', 'file')
return;
end
end
%% Create a neuroshare file handle
% This is a necessary step; the file handle is used as an argument in all
% subsequent neuroshre functions.
if nargin > 0
[ns_RESULT, hFile] = ns_OpenFile(varargin{1});
else
[ns_RESULT, hFile] = ns_OpenFile();
end
% check to make sure the operation succeeded
if( strcmp(ns_RESULT, 'ns_OK') ~= 1 )
disp(['ERROR: ns_OpenFile() returned ' ns_RESULT]);
return;
end
%% Read high-level information about the recording
% The file info structure "nsFileInfo" contains information about when the
% recording was created, the timespan of the recording, timestamp
% resolution in seconds, and the number of entities in the recording.
[ns_RESULT, nsFileInfo] = ns_GetFileInfo(hFile);
% check to make sure the operation succeeded
if( strcmp(ns_RESULT, 'ns_OK') ~= 1 )
disp(['ERROR: ns_GetFileInfo() returned ' ns_RESULT]);
return;
end
% Using the entity count from the nsFileInfo structure we can preallocate
% memory for storing the nsEntityInfo structure for each entity. The
% nsEntityInfo structure contains the entity label, type, and item count
% (NOTE: Item count is the number of events or samples recorded for an
% entity).
nsEntityInfo(nsFileInfo.EntityCount,1).EntityLabel = '';
nsEntityInfo(nsFileInfo.EntityCount,1).EntityType = 0;
nsEntityInfo(nsFileInfo.EntityCount,1).ItemCount = 0;
% The entity inforamtion is read using ns_GetEntityInfo()
for i = 1:nsFileInfo.EntityCount
[~, nsEntityInfo(i,1)] = ns_GetEntityInfo(hFile, i);
end
%% Organize all entities in the recording by type
% As per the Neuroshare specification, The codes for the various types of
% entities are as follows:
%
% Unknown entity 0
%
% Event entity 1
%
% Analog entity 2
%
% Segment entity 3
%
% Neural Event entity 4
%
% NOTES:
% 1) In the data files saved by Trellis there currently are no entities
% of type Unknown or Neural Event. Neural Event type entities will be
% present when online sorting is enabled (in a future Grapevine release)
%
% 2) A review of MATLAB syntax:
%
% - Enclosing a structure element in brackets concatinates it to form an
% array. For example, [struct.element1] is an array of all of the
% element1 of the structure struct.
%
% - Setting an array equal to a number creates a logical index of all of
% the elements that equal the particular number.
%
% - Using the find function on the logical index array gives a numerical
% index which is the EntityID of the particular EntityType.
EventEntityIDs = find([nsEntityInfo.EntityType]==1);
AnalogEntityIDs = find([nsEntityInfo.EntityType]==2);
SegmentEntityIDs = find([nsEntityInfo.EntityType]==3);
%% Organize entity labels by entity type
% Labels are usefull for identifying entities and labeling plots.
EventEntityLabels = {nsEntityInfo(EventEntityIDs).EntityLabel};
AnalogEntityLabels = {nsEntityInfo(AnalogEntityIDs).EntityLabel};
SegmentEntityLabels = {nsEntityInfo(SegmentEntityIDs).EntityLabel};
%% Organize item counts by entity type
% This is usefull for any data retrieval using the ns_Get*Data functions.
% For example, one could access data for the third Analog Entity with the
% following line:
%
% [ns_RESULT, SampleCount, Samples] = ...
% ns_GetAnalogData(hFile, AnalogEntityIDs(3), 1, AnalogItemCounts(3));
%
EventItemCounts = [nsEntityInfo(EventEntityIDs).ItemCount];
AnalogItemCounts = [nsEntityInfo(AnalogEntityIDs).ItemCount];
SegmentItemCounts = [nsEntityInfo(SegmentEntityIDs).ItemCount];
%% Get data and timestamps for Event-type Entities
% Before reading the event data and their corresponding time stamps we
% first pre-allocate arrays to hold all of the information (time stamps,
% data sizes, and the data itself). We then loop throuh the list of event-
% type entities populating these arrays.
EventEntityCount = length(EventEntityIDs);
Events = nan(max(EventItemCounts), EventEntityCount);
EventTimes = nan(max(EventItemCounts), EventEntityCount);
EventSizes = nan(max(EventItemCounts), EventEntityCount);
for i = 1:EventEntityCount
for j = 1:EventItemCounts(i)
[~, EventTimes(j,i), Events(j,i), EventSizes(j,i)] = ...
ns_GetEventData(hFile, EventEntityIDs(i), j);
end
end
%% Get waveforms and sample counts for Analog-type entities
% When the number of Analog samples recorded is large it is possible to
% exceed the memory limit of your computer if you try to load all samples
% at once. Here we demonstrate how to limit the number of samples accessed
% for a specific entity. Use MaxAnalogSampleCount to control the size of
% the sample set.
AnalogEntityCount = length(AnalogEntityIDs);
MaxAnalogSampleCount = 10*30000; % 10 seconds @ 30,000 samp/sec
AnalogSampleReadStart = 1;
% Calculate the number of samples to read for each analog entity. Will
% hold the max number of data to be read (MaxAnalogSampleCount) or the
% number of samples in the data, which ever is smaller.
AnalogSampleReadCounts = min(AnalogItemCounts, MaxAnalogSampleCount);
% Analog entities may have various item counts (sample length) depending on
% the rate of sampling. As the data is retrieved, arrays are allocated for
% the fastest sampling (largest number of samples). The data correspoding
% to slower sampling will be padded with zeros.
AnalogSampleCounts = zeros(AnalogEntityCount, 1);
AnalogWaveforms = zeros(max(AnalogSampleReadCounts), AnalogEntityCount);
fprintf('retrieving continuous data for channel:\n');
for i = 1:AnalogEntityCount
fprintf('%3d, ', i);
if mod(i, 20) == 0
fprintf('\n');
end
% Read data from files and pack it in the
[~, AnalogSampleCounts(i), AnalogWaveforms(1:AnalogSampleReadCounts(i),i)] = ...
ns_GetAnalogData(hFile, AnalogEntityIDs(i), ...
AnalogSampleReadStart, AnalogSampleReadCounts(i));
end
fprintf('\n');
% NOTE: The NEV specification supports pauses in a recording. The
% Neuroshare API does not make specific provisions for handline pauses.
% Thus for NEV continuous reordings with pauses, the MATLAB Native
% Neuroshare implementation of ns_GetAnalogData() returns the number of
% samples before the first pauses.
%% Get waveforms and timestamps for all Segment-type entities
SegmentEntityCount = length(SegmentEntityIDs);
SegmentTimeStamps = nan(SegmentEntityCount, max(SegmentItemCounts));
SegmentUnitIDs = nan(SegmentEntityCount, max(SegmentItemCounts));
SegmentSampleCounts = nan(SegmentEntityCount, max(SegmentItemCounts));
SegmentWaveforms = cell(size(SegmentTimeStamps));
fprintf('retrieving spikes for channel:\n')
for i = 1:SegmentEntityCount
fprintf('%3d, ', i);
if mod(i, 20) == 0
fprintf('\n');
end
for j = 1:SegmentItemCounts(i)
[~, ...
SegmentTimeStamps(i,j), ...
SegmentWaveforms{i,j}, ...
SegmentSampleCounts(i,j), ...
SegmentUnitIDs(i,j)] = ...
ns_GetSegmentData(hFile, SegmentEntityIDs(i), j);
end
end
fprintf('\n');
%% Examples of data visualization
scrnsize = get( 0, 'ScreenSize' );
% set up the sizes of the figures
figAnalogPos = [(scrnsize(3)*0.02)/2, scrnsize(4)*0.8-90, ...
scrnsize(3)*0.98, scrnsize(4)*0.2];
figSegmentPos = [figAnalogPos(1), 60, ...
scrnsize(3)*0.35, figAnalogPos(2)-160];
figSegmentGridPos = ...
[figSegmentPos(1) + figSegmentPos(3) + 20, ...
figSegmentPos(2), ...
(figAnalogPos(1)+figAnalogPos(3))-(figSegmentPos(1)+ ...
figSegmentPos(3)+20), ...
figSegmentPos(4)];
% -
% - 1) Plot some Analog waveforms
% -
% make sure at least one analog entity exists
if AnalogEntityCount > 0
% create the figure
figAnalog = figure('Name', ...
'Example plot of Analog Entity Recording', ...
'NumberTitle', ...
'off');
set(figAnalog, 'Position', figAnalogPos);
analogEntityIdx = 29;
analogEntityID = AnalogEntityIDs(analogEntityIdx);
%analogEntityLabel = AnalogEntityLabels{analogEntityIdx};
analogEntityWaveform = AnalogWaveforms(:,analogEntityIdx);
analogDataUnit = 'uV';
analogTimeUnit = 'ms';
sampPerAnalogTimeUnit = 30;
analogTimeVect = ...
((0:(length(analogEntityWaveform)-1))+(AnalogSampleReadStart-1))./sampPerAnalogTimeUnit;
% plot the waveform
plot(analogTimeVect*1000, analogEntityWaveform);
xlabel(['time (' analogTimeUnit ')']);
ylabel(analogDataUnit);
%title(['Data for Entity [' analogEntityLabel ']']);
xlim([analogTimeVect(1), analogTimeVect(end)]);
end
% -
% - 2) Plot segment waveforms and activity histogram for a specific entity.
% -
% make sure at least one Segment entity exists
if SegmentEntityCount > 0
figSegment = figure('Name', ...
'Example plot of Segment Entity Recording', ...
'NumberTitle', ...
'off');
set(figSegment, 'Position', figSegmentPos);
% In NEV recordings, all of the spike waveforms are of the same length.
% Here we show an example of how to plot all of the spike waveforms for a
% specific segment-type entity.
entityIdx = 1;
entityID = SegmentEntityIDs(entityIdx);
entityLabel = SegmentEntityLabels{entityIdx};
spikes = SegmentWaveforms(entityIdx,:);
spikeCount = SegmentItemCounts(entityIdx);
spikeTimes = SegmentTimeStamps(entityIdx,:);
spikeTimes = spikeTimes(~isnan(spikeTimes)); % remove NaN values
sampCount = SegmentSampleCounts(entityIdx,1);
spikeUnit = 'uV';
spikeTimeUnit = 'ms';
sampPerTimeUnit = 30; % NEV spike sample rate is 30,000 samp/sec
timeBaseVect = (0:(sampCount-1))./sampPerTimeUnit;
histTimeUnit = 'sec';
histBinCenters = (((1:10)-.5)./10)*spikeTimes(end);
% cell array that holds the time vector for each spike waveform.
timeVects = cell(size(spikes));
[timeVects{1,1:spikeCount}] = deal(timeBaseVect);
% plot all the waveforms
subplot(2, 1, 1);
hold on
cellfun(@plot, timeVects, spikes)
title(['Spike events for Entity [' entityLabel ']']);
xlabel(['Time (' spikeTimeUnit ')']);
ylabel(spikeUnit);
xlim([timeBaseVect(1), timeBaseVect(end)]);
% plot the histogram
subplot(2, 1, 2);
hist(spikeTimes, histBinCenters)
title(['Spike time histogram for Entity [' entityLabel ']']);
xlabel(['Time (' histTimeUnit ')']);
ylabel('count');
xlim([0, histBinCenters(end)+histBinCenters(1)]);
end
% -
% - 3) Spike waveforms for all entities
% -
% make sure at least one Segment entity exists
if SegmentEntityCount > 0
% make the figure
figSegmentGrid = ...
figure('Name', ...
['Example plot of several' ...
' Spikes for all Segment Entities'], ...
'NumberTitle', ...
'off');
set(figSegmentGrid, 'Position', figSegmentGridPos);
rowCount = ceil(sqrt(SegmentEntityCount));
colCount = ceil(SegmentEntityCount/rowCount);
% plot the first spikeCount spikes for each entity
for i=1:SegmentEntityCount
entityIdx = i;
entityLabel = SegmentEntityLabels{entityIdx};
spikes = SegmentWaveforms(entityIdx,:);
spikesValidFlg = ~cellfun(@isempty, spikes);
lastValidIdx = find(spikesValidFlg==0, 1, 'first')-1;
% catch case where all spikes are valid
if isempty(lastValidIdx)
lastValidIdx = length(spikes);
end
% change this to plot more/fewer spikes
spikeCount = min(10, lastValidIdx);
spikes = spikes(1:spikeCount);
sampCount = SegmentSampleCounts(entityIdx,1);
sampPerMSec = 30; % NEV spike sample rate is 30,000 samp/sec
timeBaseVect = (0:(sampCount-1))./sampPerMSec;
% cell array that holds the time vector for each waveform.
timeVects = cell(size(spikes));
[timeVects{1,1:spikeCount}] = deal(timeBaseVect);
% plot the selected waveforms
subplot(rowCount, colCount, i);
hold on
cellfun(@plot, timeVects, spikes)
title(entityLabel);
xlim([timeBaseVect(1), timeBaseVect(end)]);
set(gca,'XTick',[]);
set(gca,'YTick',[]);
end
end
%% Close the file handle
% When you are finished using neuroshare functions or before you open
% another recording you must call ns_CloseFile(). It is also good practice
% to clear the hFile variable from the workspace.
ns_RESULT = ns_CloseFile(hFile);
% check to make sure the operation succeeded
if( strcmp(ns_RESULT, 'ns_OK') ~= 1 )
disp(['ERROR: ns_CloseFile() returned ' ns_RESULT]);
return;
end
clear hFile