-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_burst_calc.py
82 lines (69 loc) · 2.62 KB
/
test_burst_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""Module for testing burst_calc.py"""
from pathlib import Path
import sys
import numpy as np
_SRC_PATH = str(Path(__file__).parent.parent / "src")
sys.path.insert(0, _SRC_PATH)
import burst_calc
class TestGetBurstLength:
"""Class for testing get_burst_length()."""
def test_no_bursts(self) -> None:
"""Test Case where no bursts are present in data."""
n_samples = 1000
sfreq = 10
threshold = 1
power = np.zeros((n_samples,))
bursts_len = burst_calc.get_burst_length(
beta_averp_norm=power, beta_thr=threshold, sfreq=sfreq,
)
assert bursts_len.size == 0
def test_only_bursts(self) -> None:
"""Test case where only bursts are present in data."""
n_samples = 1000
sfreq = 10
threshold = 0
power = np.ones((n_samples,))
bursts_len = burst_calc.get_burst_length(
beta_averp_norm=power, beta_thr=threshold, sfreq=sfreq,
)
np.testing.assert_array_almost_equal(bursts_len, np.array([n_samples / sfreq]))
def test_array_starts_with_no_bursts(self) -> None:
burst_starts = np.array([1, 400, 700])
burst_ends = np.array([100, 600, 1000])
n_samples = 1000
sfreq = 10
threshold = 0.5
power = np.zeros((n_samples,))
for ind, (burst_start, burst_end) in enumerate(zip(burst_starts, burst_ends)):
power[burst_start:burst_end] = ind + 1
bursts_len = burst_calc.get_burst_length(
beta_averp_norm=power, beta_thr=threshold, sfreq=sfreq,
)
np.testing.assert_array_almost_equal(
bursts_len, (burst_ends - burst_starts) / sfreq
)
def test_array_starts_with_bursts(self) -> None:
"""Test case where only bursts are present in data."""
burst_starts = np.array([0, 400, 700])
burst_ends = np.array([100, 600, 1000])
n_samples = 1000
sfreq = 10
threshold = 0.5
power = np.zeros((n_samples,))
for ind, (burst_start, burst_end) in enumerate(zip(burst_starts, burst_ends)):
power[burst_start:burst_end] = ind + 1
bursts_len = burst_calc.get_burst_length(
beta_averp_norm=power, beta_thr=threshold, sfreq=sfreq,
)
np.testing.assert_array_almost_equal(
bursts_len, (burst_ends - burst_starts) / sfreq
)
def main():
"""Run this script."""
TestClass = TestGetBurstLength()
TestClass.test_array_starts_with_bursts()
TestClass.test_array_starts_with_no_bursts()
TestClass.test_no_bursts()
TestClass.test_only_bursts()
if __name__ == "__main__":
main()