-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathNSF-Simons-MoDL_23.html
458 lines (245 loc) · 10.6 KB
/
NSF-Simons-MoDL_23.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
<!DOCTYPE html>
<html>
<head>
<title>IID++</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<!-- <link rel="stylesheet" href="slides_style_v2.css"> -->
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
#### Surprise! IID++<br>Out of Distribution & <br>Prospective Learning
Joshua T. Vogelstein <br>
<!-- , [JHU](https://www.jhu.edu/) <br> -->
<!-- Co-PI: Vova Braverman, [JHU](https://www.jhu.edu/) <br> -->
Ashwin de Silva, Rahul Ramesh, Pratik Chaudhari, <br>Carey E. Priebe, Timothy Verstynen, Konrad Kording, <br>The Future Learning Collective
<!-- | Joshua T. Vogelstein <br> -->
<!-- [Microsoft Research](https://www.microsoft.com/en-us/research/): Weiwei Yang | Jonathan Larson | Bryan Tower | Chris White -->
<img src="images/neurodata_blue.png" width="20%" style="vertical-align: top; " >
<!-- <img src="images/jhu.png" width="8%" style="vertical-align: top"> -->
---
#### Outline
- Classical Learning
- Out of Distribution (OoD) Learning
- Prospective Learning
---
#### What is learning?
<img src="images/glivenko-cantelli-33.png" width="640">
<img src="images/GV2.png" width="640">
---
#### A more modern definition
- Assume $Z\_i \sim^{iid} F, \quad i \in [n]$
- Let $L((Z_i)^n) \rightarrow h_n$
- Let $R$ denote risk, eg, expected loss
- Let $R^*$ be Bayes optimal risk
- $L$ learns iff $\, \exists N$ s.t. $\forall n > N$
<!-- & $\delta, \epsilon > 0$ -->
$$\mathbb{P}[ R(h\_n) - R^* < \epsilon ] \geq 1 - \delta$$
- GC thm: for any $F$, $\exists L$ s.t. error ↘ as $n$ ↗
- implication: more data is better!
---
#### So learning is solved?
- No.
---
#### What's the problem
<img src="images/Hand2006.png" width="640">
Future (validation) data is sampled from a different distribution
---
#### Real world failures
<img src="images/google_flu_trends.jpg" width="640">
Can't model real world phenomema very well
---
#### Natural Intelligence failures
<img src="images/ScienceVogelstein23.png" width="640">
Can't replicate the intelligence of even the simplest organisms
---
## The Value of Out of Distribution Data
.footnote[.small[De Silva, et al., The Value of OoD Data. ICML, 2023]]
---
#### What is OoD Learning?
- Assume source/OoD $Z\_i \sim^{iid} F, \quad i \in [m]$
- Assume target $Z\_i \sim^{iid} F', \quad m < i \leq n+m$
- Let $L((Z\_i)^{n+m}) \rightarrow h\_{n+m}$
- Let $R$ denote risk, eg, expected loss wrt $F'$
- Let $R^*$ be Bayes optimal risk wrt $F'$
- $L$ OoD learns from $F$ about $F'$ if
$$\mathbb{P}[ R(h\_{n+m}) - R^* < \epsilon ] \geq 1 - \delta$$
- Question: does more data from $F$ help?
---
#### Let's take a poll
- Let $E=\mathbb{E}[ R(h\_{n+m}) - R^*]$ be generalization error on $F'$
- Expectation wrt $n$ samples from $F$ and $m$ samples from $F'$
Who thinks as $m$ increases, for fixed $n$, E
--
1. decreases
--
2. increases
--
3. depends on the relationship between $F$ and $F'$
---
#### Let's see: the simplest example
- $F$ is two gaussians
- $F'$ is two gaussians shifted by $\Delta$
<!-- <img src="https://github.com/neurodata/ood-tl/blob/main/reports/figures/gausstask_fig.png?raw=true" width="700"> -->
<img src="images/ood-1-summary-plot-a.png" width="300">
<!-- ![:scale 100%](https://github.com/neurodata/ood-tl/blob/main/reports/figures/gausstask_fig.png?raw=true) -->
---
#### E is non-monotonic in $m$!
<!-- <img src="https://github.com/neurodata/ood-tl/blob/main/reports/figures/gaussian_task_analytical_plot.svg?raw=true" width="640"> -->
<img src="images/ood-1-summary-plot-b.png" height="300">
- For a fixed $\Delta$, error can be non-monotonic wrt OoD sample size $m$
- implications: more pre-training can hurt!
---
#### A Bias/Variance Explanation
<img src="images/2-bias-var-breakdown-plot.png" width="500">
---
#### Synthetic image data examples
<img src="images/9-simdata-plot.png" width="640">
---
#### Trying to break it
<img src="images/11-effect-of-hyp-aug-pt.png" width="640">
---
#### Summary so far
- OoD learning is different in kind from in-distribution learning
- More OoD data does not necessarily help or hurt, it depends on sample sizes and distributions.
- Time to think more carefully about how much data of different kinds to use
---
#### What about time?
- $L$ OoD learns from $F$ about $F'$ if
$$\mathbb{P}[ R(h\_{n+m}) - R^* < \epsilon ] \geq 1 - \delta$$
Does not include time.
Let's revisit learning frameworks, and see what is missing
---
## Prospective Learning: Principled Extrapolation to the Future
.footnote[.small[De Silva, et al., Prospective Learning: Principled Extrapolation to the Future. CoLLAs, 2023]]
---
#### Learning Frameworks
- "Classical" PAC Learning: best case scenario, $F\_{future} = F\_{past}$
- Online Learning: worst case scenario, <br> $F\_{future}$ could be adversarial
In both cases, the "best" thing to do is whatever would have worked best in the past.
---
#### Fancy Learning Frameworks
- OoD PAC Learning: $F\_{future} \neq F\_{past}$
- Online meta-learning: $F\_{future} \sim^{iid} G$
- Continual learning: $F\_{future} \sim^{iid} G$, with bias towards previously sampled F's
In all these cases, still no ability to predict $F\_{future}$ at all.
But what about when one can predict future F's somewhat?
---
<img src="images/seligman13.png" width="640">
Learning evolved because it improves future performance in a partially predictable dynamic world
---
#### Consider...
Moving to Berkeley vs Boston
- I imagine challenges I'll face in B-town, and how I'll overcome them
- Choose the one that minimizes expected loss integrated over my life
- But I only make this choice once
---
#### Consider the following sequence
<img src="images/task-seq.png" width="640">
--
Has anyone ever run an experiment?
---
#### Online SGD & FTL Fail
<img src="images/online_seq1.png" width="640">
--
- Online Meta & Continual would do better, but never get to zero error
- Because none of these frameworks *prospect*
---
#### Formalizing prospection
- $\mathcal{H}$ is a set of feasible hypotheses
- $t \in \mathcal{T}$ indexes time
- $P :=$ { $P\_t$ }$\_{t \geq 0}$ be a sequence of distributions
- $D\_{t'} =$ { $z\_t$ }$\_{t < t'}$ be a dataset drawn from $P$ such that $z\_t \sim P\_t$,
- $\mathcal{D}$ be the set of all possible datasets
A prospective learner $L: \mathcal{D} \times \mathcal{T} \mapsto \mathcal{H}$, so <br>
$L(D\_{t'}, t) = \hat{h}\_t^{t'}$, where $\hat{h}\_t^{t'}$ is the hypothesis at time $t > t'$ trained on data up until time $t'$
---
#### Formalizing prospection
- $\ell_t : \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}$ is a time-varying loss function.
- Risk at time $t$ be the expected loss, $ R\_t(L(D\_{t'},t)) = \mathbb{E}\_{z \sim P\_t}\left[ \ell\_t (L(D\_{t'},t) , z) \right]$
<!-- = \mathbb{E}\_{z \sim P\_t} [ \ell\_t ( \hat{h}^{t'}\_t , z) ]$. -->
Colloquially, we desire that the expected risk decreases as $t$ increases
---
#### Strong Prospective Learnability
<img src="images/strong_PL.png" width="640">
Key differences with Strong PAC Learning:
- we care about risk integrated over the future
- this requires prospecting about (1) what the future will be like, and (2) what we will be like
---
#### Weak Prospective Learnability
<img src="images/weak_PL.png" width="640">
where $L\_{ERM} : \mathcal{D} \mapsto \mathcal{H}$ be the ERM learner, so $\bar{h}\_0^{t'} = L\_{ERM}(D\_{t'})$.
Key additional differences with Weak PAC Learning:
- we compare to an ERM learner, meaning it does not include time
---
#### Continuum Hypothesis of Learning Hypotheses
- Let $P$ is a sequence of distributions,
- Let $\mathcal{H}$ is the set of all possible relevant hypotheses.
We conjecture that there are multiple classes of learning difficulty
1. P is PAC Learnable
2. P is weakly prospectively learnable (ie, we can do better than ERM)
3. P is strongly prospectively learnable (for some $\epsilon$)
4. P is uniformly prospectively learnable (for all $\epsilon$)
5. P is not prospectively learnable
---
#### Did we re-invent the wheel?
How is reinforcement learning different from this?
- We directly build on statistical decision theory
- RL theory assumes POMDP on dynamics, not PL
- Vanilla RL focuses on a single task, not PL
- RL focuses on inference problem, learning the parameters is a necessary sub-task, PL focuses on the learning problem
- RL algorithms require many trials, we care about zero-shot learning
---
#### Zooming out
- How do we design truly intelligent systems?
- How do we solve the AI alignment issue?
---
#### Publications
1. De Silva et al. [The Value of Out-of-Distribution Data](https://arxiv.org/abs/2109.14501), ICML, 2023.
1. De Silva et al. [Prospective Learning: Princpled Extrapolation to the Future](https://arxiv.org/abs/2004.12908), CoLLAs, 2023.
---
##### Acknowledgements
<img src="images/neurodata2023.jpg" width="640">
.small[NSF Simons MoDL, ONR N00014-22-1-2255, and NSF CCF 2212519]
---
##### Questions?
<img src="images/dino_yummies.jpg" width="640">
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<!-- <script src="remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
// remark.macros.scale = function (percentage) {
// var url = this;
// return '<img src="' + url + '" style="width: ' + percentage + '" />';
// };
// var slideshow = remark.create({
// Set the slideshow display ratio
// Default: '4:3'
// Alternatives: '16:9', ...
// {
// ratio: '16:9',
// });
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>