-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathsetup.py
355 lines (310 loc) · 11.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, List, Tuple
from setuptools import find_packages, setup
from utils.artifacts import get_release_and_version
package_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "src", "sparseml"
)
(
is_release,
is_dev,
version,
version_major,
version_minor,
version_bug,
) = get_release_and_version(package_path)
# load and overwrite version and release info from sparseml package
exec(open(os.path.join("src", "sparseml", "version.py")).read())
print(f"loaded version {version} from src/sparseml/version.py")
version_nm_deps = f"{version_major}.{version_minor}.0"
if is_release:
_PACKAGE_NAME = "sparseml"
elif is_dev:
_PACKAGE_NAME = "sparseml-dev"
else:
_PACKAGE_NAME = "sparseml-nightly"
_deps = [
"pyyaml>=5.0.0",
"numpy>=1.17.0,<2.0",
"matplotlib>=3.0.0",
"merge-args>=0.1.0",
"onnx>=1.5.0,<1.15.0",
"pandas>=0.25.0",
"packaging>=20.0",
"psutil>=5.0.0",
"pydantic>=2.0.0,<2.8.0",
"requests>=2.0.0",
"scikit-learn>=0.24.2",
"scipy<1.9.2,>=1.8; python_version <= '3.9'",
"scipy>=1.0.0; python_version > '3.9'",
"tqdm>=4.0.0",
"toposort>=1.0",
"GPUtil>=1.4.0",
"protobuf>=3.12.2,<=3.20.3",
"click>=7.1.2,!=8.0.0", # latest version < 8.0 + blocked version with reported bug
]
_nm_deps = [f"{'sparsezoo' if is_release else 'sparsezoo-nightly'}>=1.7.0"]
_deepsparse_deps = [f"{'deepsparse' if is_release else 'deepsparse-nightly'}>=1.7.0"]
_deepsparse_ent_deps = ["deepsparse-ent>=1.7.0"]
_onnxruntime_deps = ["onnxruntime>=1.0.0"]
_clip_deps = ["open_clip_torch==2.20.0"]
supported_torch_version = "torch>=1.7.0"
_pytorch_deps = [
supported_torch_version,
"gputils",
]
_pytorch_all_deps = _pytorch_deps + [
"torchvision>=0.3.0,<0.17",
"torchaudio<=2.0.1",
]
_pytorch_vision_deps = _pytorch_deps + [
"torchvision>=0.3.0,<0.17",
"opencv-python<=4.6.0.66",
]
_transformers_deps = _pytorch_deps + [
"transformers<4.41",
"datasets<2.19",
"dvc",
"scikit-learn",
"seqeval",
"einops",
"evaluate>=0.4.1",
"accelerate>=0.20.3",
"safetensors>=0.4.1",
"compressed-tensors" if is_release else "compressed-tensors-nightly",
]
_llm_deps = _transformers_deps + ["sentencepiece"]
_yolov5_deps = _pytorch_vision_deps + [
f"{'nm-yolov5' if is_release else 'nm-yolov5-nightly'}<={version_nm_deps}"
]
_notebook_deps = [
"jupyter>=1.0.0",
"ipywidgets>=7.0.0",
]
_tensorflow_v1_deps = ["tensorflow<2.0.0", "tensorboard<2.0.0", "tf2onnx>=1.0.0,<1.6"]
_tensorflow_v1_gpu_deps = [
"tensorflow-gpu<2.0.0",
"tensorboard<2.0.0",
"tf2onnx>=1.0.0,<1.6",
]
_keras_deps = ["tensorflow~=2.2.0", "keras2onnx>=1.0.0"]
_open_pif_paf_deps = ["openpifpaf==0.13.6"]
_dev_deps = [
"beautifulsoup4==4.9.3",
"black==22.12.0",
"flake8==3.9.2",
"isort==5.8.0",
"wheel>=0.36.2",
"pytest>=6.0.0",
"pytest-mock>=3.6.0",
"pytest-rerunfailures>=13.0",
"tensorboard>=1.0,<2.9",
"tensorboardX>=1.0",
"evaluate>=0.4.1",
"parameterized",
]
_docs_deps = [
"m2r2>=0.2.7",
"mistune<3,>=2.0.3",
"myst-parser>=0.14.0",
"rinohtype~=0.4.2",
"sphinx~=3.5.0",
"sphinx-copybutton~=0.3.0",
"sphinx-markdown-tables~=0.0.15",
"sphinx-multiversion~=0.2.4",
"sphinx-pydantic~=0.1.0",
"sphinx-rtd-theme~=0.5.0",
"docutils<0.17",
]
_ultralytics_deps = [
"ultralytics==8.0.124",
supported_torch_version,
]
def _setup_packages() -> List:
return find_packages(
"src", include=["sparseml", "sparseml.*"], exclude=["*.__pycache__.*"]
)
def _setup_package_dir() -> Dict:
return {"": "src"}
def _setup_install_requires() -> List:
return _nm_deps + _deps
def _setup_extras() -> Dict:
return {
"clip": _clip_deps,
"dev": _dev_deps,
"docs": _docs_deps,
"deepsparse": _deepsparse_deps,
"deepsparse-ent": _deepsparse_ent_deps,
"openpifpaf": _open_pif_paf_deps,
"onnxruntime": _onnxruntime_deps,
"torch": _pytorch_deps,
"torch_all": _pytorch_all_deps,
"torchvision": _pytorch_vision_deps,
"transformers": _transformers_deps,
"llm": _llm_deps,
"notebook": _notebook_deps,
"tf_v1": _tensorflow_v1_deps,
"tf_v1_gpu": _tensorflow_v1_gpu_deps,
"tf_keras": _keras_deps,
"ultralytics": _ultralytics_deps,
"yolov5": _yolov5_deps,
}
def _setup_entry_points() -> Dict:
entry_points = {
"console_scripts": [
# export
"sparseml.export=sparseml.export.export:main",
# sparsification
"sparseml.framework=sparseml.framework.info:_main",
"sparseml.sparsification=sparseml.sparsification.info:_main",
]
}
# transformers integration
for task in [
"masked_language_modeling",
"question_answering",
"text_classification",
"token_classification",
]:
entry_points["console_scripts"].extend(
[
f"sparseml.transformers.{task}=sparseml.transformers.{task}:main",
f"sparseml.transformers.train.{task}=sparseml.transformers.{task}:main",
]
)
entry_points["console_scripts"].extend(
[
"sparseml.transformers.export_onnx=sparseml.transformers.export:main",
"sparseml.transformers.export_onnx_refactor=sparseml.transformers.sparsification.obcq.export:main", # noqa 501
]
)
entry_points["console_scripts"].extend(
[
"sparseml.transformers.text_generation.apply=sparseml.transformers.finetune.text_generation:apply", # noqa 501
"sparseml.transformers.text_generation.compress=sparseml.transformers.finetune.text_generation:apply", # noqa 501
"sparseml.transformers.text_generation.train=sparseml.transformers.finetune.text_generation:train", # noqa 501
"sparseml.transformers.text_generation.finetune=sparseml.transformers.finetune.text_generation:train", # noqa 501
"sparseml.transformers.text_generation.eval=sparseml.transformers.finetune.text_generation:eval", # noqa 501
"sparseml.transformers.text_generation.oneshot=sparseml.transformers.finetune.text_generation:oneshot", # noqa 501
]
)
# image classification integration
entry_points["console_scripts"].extend(
[
"sparseml.image_classification.export_onnx="
"sparseml.pytorch.torchvision.export_onnx:main",
"sparseml.image_classification.train="
"sparseml.pytorch.torchvision.train:cli",
]
)
entry_points["console_scripts"].extend(
[
"sparseml.pytorch.image_classification.export_onnx="
"sparseml.pytorch.image_classification.export:main",
"sparseml.pytorch.image_classification.train="
"sparseml.pytorch.image_classification.train:main",
"sparseml.pytorch.image_classification.lr_analysis="
"sparseml.pytorch.image_classification.lr_analysis:main",
"sparseml.pytorch.image_classification.pr_sensitivity="
"sparseml.pytorch.image_classification.pr_sensitivity:main",
]
)
# object detection integration
entry_points["console_scripts"].extend(
[
"sparseml.yolov5.export_onnx=sparseml.yolov5.scripts:export",
"sparseml.yolov5.train=sparseml.yolov5.scripts:train",
"sparseml.yolov5.validation=sparseml.yolov5.scripts:val",
]
)
# instance segmentation integration
yolact_top_level_callable = "sparseml.yolact"
yolact_scripts_path = "sparseml.yolact.scripts"
entry_points["console_scripts"].extend(
[
f"{yolact_top_level_callable}.export_onnx={yolact_scripts_path}:export",
f"{yolact_top_level_callable}.train={yolact_scripts_path}:train",
f"{yolact_top_level_callable}.validation={yolact_scripts_path}:val",
f"{yolact_top_level_callable}.download={yolact_scripts_path}:download",
]
)
# recipe_template entrypoint
entry_points["console_scripts"].append(
"sparseml.recipe_template=sparseml.pytorch.recipe_template.cli:main"
)
# pose detection entrypoint
entry_points["console_scripts"].extend(
[
"sparseml.openpifpaf.train=sparseml.openpifpaf.train:main",
"sparseml.openpifpaf.export_onnx=sparseml.openpifpaf.export:main",
]
)
entry_points["console_scripts"].extend(
[
"sparseml.ultralytics.train=sparseml.yolov8.train:main",
"sparseml.ultralytics.val=sparseml.yolov8.val:main",
"sparseml.ultralytics.export_onnx=sparseml.yolov8.export:main",
]
)
# eval entrypoint
entry_points["console_scripts"].append(
"sparseml.evaluate=sparseml.evaluation.cli:main"
)
return entry_points
def _setup_long_description() -> Tuple[str, str]:
return open("README.md", "r", encoding="utf-8").read(), "text/markdown"
setup(
name=_PACKAGE_NAME,
version=version,
author="Neuralmagic, Inc.",
author_email="[email protected]",
description=(
"Libraries for applying sparsification recipes to neural networks with a "
"few lines of code, enabling faster and smaller models"
),
long_description=_setup_long_description()[0],
long_description_content_type=_setup_long_description()[1],
keywords=(
"inference, machine learning, neural network, computer vision, nlp, cv, "
"deep learning, torch, pytorch, tensorflow, keras, sparsity, pruning, "
"deep learning libraries, onnx, quantization, automl"
),
license="Apache",
url="https://github.com/neuralmagic/sparseml",
include_package_data=True,
package_dir=_setup_package_dir(),
packages=_setup_packages(),
install_requires=_setup_install_requires(),
extras_require=_setup_extras(),
entry_points=_setup_entry_points(),
python_requires=">=3.8.0,<3.12",
classifiers=[
"Development Status :: 5 - Production/Stable",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Information Technology",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: POSIX :: Linux",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries :: Python Modules",
],
)