-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path0101-symmetric-tree.cpp
46 lines (39 loc) · 1.38 KB
/
0101-symmetric-tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
Given the root of a binary tree, this function checks whether the tree is symmetric,
i.e., whether it is a mirror of itself around its center.
Time Complexity: O(n), where n is the number of nodes in the binary tree.
Space Complexity: O(n), due to the recursive stack space.
Approach:
- If the root is NULL, return true (base case).
- Recursively check if the left subtree of the root is mirrored with the right subtree.
- To check if two subtrees are mirrored, compare their left and right children recursively.
Example:
Input: root = [1,2,2,3,4,4,3]
Output: true
Input: root = [1,2,2,null,3,null,3]
Output: false
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
return dfs(root, root);
}
bool dfs(TreeNode* left, TreeNode* right) {
if (!left && !right)
return true;
if (!left || !right)
return false;
return left->val == right->val && dfs(left->left, right->right) && dfs(left->right, right->left);
}
};