-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path0052-n-queens-ii.c
53 lines (48 loc) · 1.16 KB
/
0052-n-queens-ii.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
Given an integer n, return the number of distinct solutions to the n-queens puzzle.
Space: O(n²)
Time: ?
*/
int min(int a, int b){
return a<b?a:b;
}
int can_ce_placed(int i, int j, int n, int** board) {
for (int k=i-1; k>=0; k--)
if (board[k][j])
return false;
for (int k=j-1; k>=0; k--)
if (board[i][k])
return false;
int m = min(i, j)+1;
for (int k=1; k<m; k++)
if (board[i-k][j-k])
return false;
m = min(i+1, n-j);
for (int k=1; k<m; k++)
if (board[i-k][j+k])
return false;
return true;
}
int backtracking(int i, int n, int** board) {
if (i==n)
return 1;
int cpt = 0;
for (int k=0; k<n; k++){
if (can_ce_placed(i, k, n, board)){
board[i][k] = 1;
cpt += backtracking(i+1, n, board);
board[i][k] = 0;
}
}
return cpt;
}
int totalNQueens(int n){
int** board = malloc(sizeof(int*)*n);
for (int i=0; i<n; i++)
board[i] = calloc(n, sizeof(int));
int ans = backtracking(0, n, board);
for (int i=0; i<n; i++)
free(board[i]);
free(board);
return ans;
}