-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpylqr_trajctrl.py
executable file
·238 lines (189 loc) · 8.68 KB
/
pylqr_trajctrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
LQR based trajectory controller
"""
from __future__ import print_function
try:
import jax.numpy as np
except ImportError:
import numpy as np
import pylqr
class PyLQR_TrajCtrl():
"""
Use second-order system and acceleration as system and input
The trajectory is given as a set of reference waypoints and associated tracking weights
or general cost function (use finite difference to have gradient & hessian)
"""
def __init__(self, R=.01, dt=0.01, use_autograd=False):
#control penalty, smoothness of the trajectory
self.R_ = R
self.dt_ = dt
self.Q_vel_ratio_ = 10
#desired functions for plant dynamics and cost
self.plant_dyn_ = None
self.plant_dyn_dx_ = None
self.plant_dyn_du_ = None
self.cost_ = None
self.cost_dx_ = None
self.cost_du_ = None
self.cost_dxx_ = None
self.cost_duu_ = None
self.cost_dux_ = None
self.ilqr_ = None
self.use_autograd=use_autograd
return
def build_ilqr_general_solver(self, cost_func, n_dims=2, T=100):
#figure out dimension
self.T_ = T
self.n_dims_ = n_dims
#build dynamics, second-order linear dynamical system
self.A_ = np.eye(self.n_dims_*2)
self.A_[0:self.n_dims_, self.n_dims_:] = np.eye(self.n_dims_) * self.dt_
self.B_ = np.zeros((self.n_dims_*2, self.n_dims_))
self.B_[self.n_dims_:, :] = np.eye(self.n_dims_) * self.dt_
self.plant_dyn_ = lambda x, u, t, aux: np.dot(self.A_, x) + np.dot(self.B_, u)
self.plant_dyn_dx_ = lambda x, u, t, aux: self.A_
self.plant_dyn_du_ = lambda x, u, t, aux: self.B_
self.cost_ = cost_func
#build an iLQR solver based on given functions...
self.ilqr_ = pylqr.PyLQR_iLQRSolver(T=self.T_-1, plant_dyn=self.plant_dyn_, cost=self.cost_, use_autograd=self.use_autograd)
return
def build_ilqr_tracking_solver(self, ref_pnts, weight_mats):
#figure out dimension
self.T_ = len(ref_pnts)
self.n_dims_ = len(ref_pnts[0])
self.ref_array = np.copy(ref_pnts)
self.weight_array = [mat for mat in weight_mats]
#clone weight mats if there are not enough weight mats
for i in range(self.T_ - len(self.weight_array)):
self.weight_array.append(self.weight_array[-1])
#build dynamics, second-order linear dynamical system
self.A_ = np.eye(self.n_dims_*2)
self.A_[0:self.n_dims_, self.n_dims_:] = np.eye(self.n_dims_) * self.dt_
self.B_ = np.zeros((self.n_dims_*2, self.n_dims_))
self.B_[self.n_dims_:, :] = np.eye(self.n_dims_) * self.dt_
self.plant_dyn_ = lambda x, u, t, aux: np.dot(self.A_, x) + np.dot(self.B_, u)
#build cost functions, quadratic ones
def tmp_cost_func(x, u, t, aux):
err = x[0:self.n_dims_] - self.ref_array[t]
#autograd does not allow A.dot(B)
cost = np.dot(np.dot(err, self.weight_array[t]), err) + np.sum(u**2) * self.R_
if t > self.T_-1:
#regularize velocity for the termination point
#autograd does not allow self increment
cost = cost + np.sum(x[self.n_dims_:]**2) * self.R_ * self.Q_vel_ratio_
return cost
self.cost_ = tmp_cost_func
self.ilqr_ = pylqr.PyLQR_iLQRSolver(T=self.T_-1, plant_dyn=self.plant_dyn_, cost=self.cost_, use_autograd=self.use_autograd)
if not self.use_autograd:
self.plant_dyn_dx_ = lambda x, u, t, aux: self.A_
self.plant_dyn_du_ = lambda x, u, t, aux: self.B_
def tmp_cost_func_dx(x, u, t, aux):
err = x[0:self.n_dims_] - self.ref_array[t]
grad = np.concatenate([2*err.dot(self.weight_array[t]), np.zeros(self.n_dims_)])
if t > self.T_-1:
grad[self.n_dims_:] = grad[self.n_dims_:] + 2 * self.R_ * self.Q_vel_ratio_ * x[self.n_dims_, :]
return grad
self.cost_dx_ = tmp_cost_func_dx
self.cost_du_ = lambda x, u, t, aux: 2 * self.R_ * u
def tmp_cost_func_dxx(x, u, t, aux):
hessian = np.zeros((2*self.n_dims_, 2*self.n_dims_))
hessian[0:self.n_dims_, 0:self.n_dims_] = 2 * self.weight_array[t]
if t > self.T_-1:
hessian[self.n_dims_:, self.n_dims_:] = 2 * np.eye(self.n_dims_) * self.R_ * self.Q_vel_ratio_
return hessian
self.cost_dxx_ = tmp_cost_func_dxx
self.cost_duu_ = lambda x, u, t, aux: 2 * self.R_ * np.eye(self.n_dims_)
self.cost_dux_ = lambda x, u, t, aux: np.zeros((self.n_dims_, 2*self.n_dims_))
#build an iLQR solver based on given functions...
self.ilqr_.plant_dyn_dx = self.plant_dyn_dx_
self.ilqr_.plant_dyn_du = self.plant_dyn_du_
self.ilqr_.cost_dx = self.cost_dx_
self.ilqr_.cost_du = self.cost_du_
self.ilqr_.cost_dxx = self.cost_dxx_
self.ilqr_.cost_duu = self.cost_duu_
self.ilqr_.cost_dux = self.cost_dux_
return
def synthesize_trajectory(self, x0, u_array=None, n_itrs=50, tol=1e-6, verbose=True):
if self.ilqr_ is None:
print('No iLQR solver has been prepared.')
return None
#initialization doesn't matter as global optimality can be guaranteed?
if u_array is None:
u_init = [np.zeros(self.n_dims_) for i in range(self.T_-1)]
else:
u_init = u_array
x_init = np.concatenate([x0, np.zeros(self.n_dims_)])
res = self.ilqr_.ilqr_iterate(x_init, u_init, n_itrs=n_itrs, tol=tol, verbose=verbose)
return res['x_array_opt'][:, 0:self.n_dims_]
"""
Test case, 2D trajectory to track a sinuoidal..
"""
import matplotlib.pyplot as plt
def PyLQR_TrajCtrl_TrackingTest():
n_pnts = 200
x_coord = np.linspace(0.0, 2*np.pi, n_pnts)
y_coord = np.sin(x_coord)
#concatenate to have trajectory
ref_traj = np.array([x_coord, y_coord]).T
weight_mats = [ np.eye(ref_traj.shape[1])*100 ]
#draw reference trajectory
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hold(True)
ax.plot(ref_traj[:, 0], ref_traj[:, 1], '.-k', linewidth=3.5)
ax.plot([ref_traj[0, 0]], [ref_traj[0, 1]], '*k', markersize=16)
lqr_traj_ctrl = PyLQR_TrajCtrl(use_autograd=True)
lqr_traj_ctrl.build_ilqr_tracking_solver(ref_traj, weight_mats)
n_queries = 5
for _ in range(n_queries):
#start from a perturbed point
x0 = ref_traj[0, :] + np.random.rand(2) * 2 - 1
syn_traj = lqr_traj_ctrl.synthesize_trajectory(x0)
#plot it
ax.plot(syn_traj[:, 0], syn_traj[:, 1], linewidth=3.5)
plt.show()
return
def PyLQR_TrajCtrl_GeneralTest():
#build RBF basis
rbf_basis = np.array([
[-1.0, -1.0],
[-1.0, 1.0],
[1.0, -1.0],
[1.0, 1.0]
])
gamma = 1
T = 100
R = 1e-5
# rbf_funcs = [lambda x, u, t, aux: np.exp(-gamma*np.linalg.norm(x[0:2]-basis)**2) + .01*np.linalg.norm(u)**2 for basis in rbf_basis]
rbf_funcs = [
lambda x, u, t, aux: -np.exp(-gamma*np.linalg.norm(x[0:2]-rbf_basis[0])**2) + R*np.linalg.norm(u)**2,
lambda x, u, t, aux: -np.exp(-gamma*np.linalg.norm(x[0:2]-rbf_basis[1])**2) + R*np.linalg.norm(u)**2,
lambda x, u, t, aux: -np.exp(-gamma*np.linalg.norm(x[0:2]-rbf_basis[2])**2) + R*np.linalg.norm(u)**2,
lambda x, u, t, aux: -np.exp(-gamma*np.linalg.norm(x[0:2]-rbf_basis[3])**2) + R*np.linalg.norm(u)**2
]
weights = np.array([.75, .5, .25, 1.])
weights = weights / (np.sum(weights) + 1e-6)
cost_func = lambda x, u, t, aux: np.sum(weights * np.array([basis_func(x, u, t, aux) for basis_func in rbf_funcs]))
lqr_traj_ctrl = PyLQR_TrajCtrl(use_autograd=True)
lqr_traj_ctrl.build_ilqr_general_solver(cost_func, n_dims=rbf_basis.shape[1], T=T)
n_eval_pnts = 50
coords = np.linspace(-2.5, 2.5, n_eval_pnts)
xv, yv = np.meshgrid(coords, coords)
z = [[cost_func(np.array([xv[i, j], yv[i, j]]), np.zeros(2), None, None) for j in range(yv.shape[1])] for i in range(len(xv))]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.contour(xv, yv, z)
n_queries = 5
u_array = np.random.rand(2, T-1).T * 2 - 1
for i in range(n_queries):
#start from a perturbed point
x0 = np.random.rand(2) * 4 - 2
syn_traj = lqr_traj_ctrl.synthesize_trajectory(x0, u_array)
#plot it
ax.plot([x0[0]], [x0[1]], 'k*', markersize=12.0)
ax.plot(syn_traj[:, 0], syn_traj[:, 1], linewidth=3.5)
plt.show()
return
if __name__ == '__main__':
# PyLQR_TrajCtrl_TrackingTest()
PyLQR_TrajCtrl_GeneralTest()