-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
89 lines (72 loc) · 3.75 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (C) 2021-2022 Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
import sys
import argparse
from pathlib import Path
import yaml
import ast
import torch
from torchvision import transforms
from how.utils import io_helpers, logging, download
from how.stages.evaluate import eval_asmk
from examples.demo_how import _overwrite_cirtorch_path, DATASET_URL
import fire_network
def evaluate_demo(demo_eval, evaluation, globals):
globals["device"] = torch.device("cpu")
if demo_eval['gpu_id'] is not None:
globals["device"] = torch.device(("cuda:%s" % demo_eval['gpu_id']))
# Handle net_path when directory
net_path = Path(demo_eval['exp_folder']) / demo_eval['net_path']
if net_path.is_dir() and (net_path / "epochs/model_best.pth").exists():
net_path = net_path / "epochs/model_best.pth"
# Load net
state = torch.load(net_path, map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net = fire_network.init_network(**state['net_params']).to(globals['device'])
net.load_state_dict(state['state_dict'])
globals["transform"] = transforms.Compose([transforms.ToTensor(), \
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
# Eval
eval_asmk(net, evaluation['inference'], globals, **evaluation['local_descriptor'])
def main(args):
"""Argument parsing and parameter preparation for the demo"""
# Arguments
parser = argparse.ArgumentParser(description="FIRe evaluation.")
parser.add_argument('parameters', type=str, help="Relative path to a yaml file that contains parameters.")
parser.add_argument("--experiment", "-e", metavar="NAME", dest="experiment")
parser.add_argument("--model-load", "-ml", metavar="PATH", dest="demo_eval.net_path")
parser.add_argument("--data-folder", metavar="PATH", dest="demo_eval.data_folder")
parser.add_argument("--exp-folder", metavar="PATH", dest="demo_eval.exp_folder")
parser.add_argument("--features-num", metavar="NUM",
dest="evaluation.inference.features_num", type=int)
parser.add_argument("--scales", metavar="SCALES", dest="evaluation.inference.scales",
type=ast.literal_eval)
args = parser.parse_args(args)
# Load yaml params
package_root = Path(__file__).resolve().parent
parameters_path = args.parameters
params = io_helpers.load_params(parameters_path)
# Overlay with command-line arguments
for arg, val in vars(args).items():
if arg not in {"command", "parameters"} and val is not None:
io_helpers.dict_deep_set(params, arg.split("."), val)
# Resolve experiment name
exp_name = params.pop("experiment")
if not exp_name:
exp_name = Path(parameters_path).name[:-len(".yml")]
# Resolve data folders
globals = {}
globals["root_path"] = (package_root / params['demo_eval']['data_folder'])
globals["root_path"].mkdir(parents=True, exist_ok=True)
_overwrite_cirtorch_path(str(globals['root_path']))
globals["exp_path"] = (package_root / params['demo_eval']['exp_folder']) / exp_name
globals["exp_path"].mkdir(parents=True, exist_ok=True)
# Setup logging
globals["logger"] = logging.init_logger(globals["exp_path"] / f"eval.log")
# Run demo
io_helpers.save_params(globals["exp_path"] / f"eval_params.yml", params)
params['evaluation']['global_descriptor'] = dict(datasets=[])
download.download_for_eval(params['evaluation'], params['demo_eval'], DATASET_URL, globals)
evaluate_demo(**params, globals=globals)
if __name__ == "__main__":
main(sys.argv[1:])