-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExercices_Higham.jl
742 lines (584 loc) · 19.9 KB
/
Exercices_Higham.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
### A Pluto.jl notebook ###
# v0.19.0
using Markdown
using InteractiveUtils
# ╔═╡ bfcd47ae-fce4-49e9-812c-7f69df8d22c4
import Pkg
# ╔═╡ 786d2f3b-4546-4e25-9893-0155239e9a98
using Markdown
# ╔═╡ 0e2d9f4e-7dc2-4942-988a-8dc93134b2e6
using LinearAlgebra
# ╔═╡ 44b5ddae-218a-4f8c-9aba-59c15cae75e0
using ChangePrecision
# ╔═╡ c7021623-bac6-4aee-9796-545b015cde30
using Readables
# ╔═╡ 3484778a-7c54-4942-a06e-0815394233d8
using ArbNumerics
# ╔═╡ 147ebec3-883c-4973-a1a0-fb37965c9fe1
md"""**Exercices and Coding - Higham**"""
# ╔═╡ 86157751-5ad7-4e7f-916e-6a4fcbbb8202
# ╔═╡ 8dc7096e-993e-4d9a-8aeb-c1f5ed6b59d8
md"Exercice 2.1"
# ╔═╡ 5806fd0d-3565-4ad8-8390-957d1fe3f8a9
md"The range of floating point numbers : $1 \leq m_{sub} \leq \beta^{t-1} \leq m_{normal} \leq \beta^t -1$"
# ╔═╡ 09e67f70-d191-4fbf-8bc9-397caa5d04ac
md"Subnormals : $e=e_{min}, m_{sub} : (\beta ^{t-1}-1)$
Here, there are 3 POSITIVE subnormals"
# ╔═╡ cc5f6ccf-dc93-45db-adbb-1caa845767b7
md"POSITIVE Normals : $(\beta^t-1-\beta^{t-1}+1)(e_{max}-e_{min}+1) +1$ (for the $0$)
There are 20 subnormals"
# ╔═╡ add47d72-b5b7-4796-ac07-dd62a2ebfbb8
β,t,emin,emax=2.0,3.0,-1.0,3.0
# ╔═╡ 16434cb6-363a-4695-8903-a283c4167c5e
begin
SUB=[]
NORM=[]
end
# ╔═╡ b74284da-0655-4860-ae43-bed45c7db9b0
for m in 1:(β^(t-1)-1)
push!(SUB,m*β^(emin-t))
end
# ╔═╡ 708a479a-a7be-496b-ad00-9938e4075bd2
for e in emin:emax
for m in β^(t-1):β^t-1
push!(NORM,m*β^(e-t))
end
end
# ╔═╡ 8cd03276-0558-42e2-b7e4-3899634015a9
SUB
# ╔═╡ 0b7343a9-7658-4eb8-9d79-049643e0656a
NORM
# ╔═╡ 2c31f338-7aa4-4b85-9229-e1f6a1862172
# ╔═╡ d850f6d7-334b-42cf-be6f-d6a4b010b522
md"Exercice 2.2"
# ╔═╡ 4658168a-9aec-4658-92f3-ca8cb05e1d51
md"See proof on paper"
# ╔═╡ 4b5e466c-a8ee-4e9e-88eb-9ece780ca06d
md"Exercice 2.4 : done on paper"
# ╔═╡ dc2652af-251f-4b65-adb1-51ff9a4acd43
md"Exercice 2.5"
# ╔═╡ 6d372346-08c2-4ae4-9789-dc5757f29d54
begin
n=100
Sn=0
for i in 1:n
Sn+=2.0^(-4i)+2.0^(-4i-1)
end
end
# ╔═╡ 7582c9a5-f712-436c-a4c6-b99764f4ce67
Sn
# ╔═╡ 8c51345e-3e13-4055-8785-d0fe140eb666
md"Exercice 2.6"
# ╔═╡ daab9208-fdbb-43c3-9a35-f43038fdd3dc
begin
println("M=2^53")
println("m=2^24")
end
# ╔═╡ 8764c25b-5f82-4ce3-afd1-d9d08f709b57
md"Exercice 2.7"
# ╔═╡ 473c55b0-5e24-4efb-9795-208a0e5678b5
begin
a=2.12345678987654321012365478987456355555555544444444444444212365478998745248
2a==a+a
end
# ╔═╡ a2caf82f-2b50-41fb-8800-891eb57d7408
begin
b=2.1234567892187654321012365478987456355555555544444444444444212365478998745248
0.5b==b/2
end
# ╔═╡ d8137e01-ed7a-4495-98c3-d2499acfec67
md"Exercice 2.10"
# ╔═╡ 3f264be2-b5e8-4d12-8973-7e78c252bcf4
begin
c=1/3
c*3
end
# ╔═╡ 20a4f2dd-fb8d-4f7d-aa8e-41badf4d4d46
1/3*3
# ╔═╡ 10fb3477-494c-4295-8680-79c4587a009b
A=[2^n for n in 1:1000]
# ╔═╡ 9c2792ff-1ebf-4bc5-bd5f-77be63328531
B=[3^n for n in 1:1000]
# ╔═╡ 59598e55-1d6a-46c8-8a3b-2340506fc1ff
C=[factorial(n) for n in 1:20]
# ╔═╡ 4c7aa237-607c-4cb1-bda7-8ccb609a7b5d
begin
r=rand(6)
D=()
for i in 1:3
for j in 1:3
D(i,j)=r(i)
D(j,i)=r(i)
end
end
D
end
# ╔═╡ a526ed01-1339-46ce-99c8-d8f1b623d6f3
E=[1 2 3;
2 2 4;
3 4 5]
# ╔═╡ d938c97a-cbe2-4f17-bcc4-939e53cdfd52
eigvals(E)
# ╔═╡ c48e28e4-c07a-491a-bdb7-79ffa16fa39e
md"Exercice 2.14"
# ╔═╡ 29185555-69d1-4507-b5a3-0f0b7d03f24e
3(4/3 − 1) − 1
# ╔═╡ a37a611e-1059-487b-95d8-92929783c926
md"**Tests of the theorems**"
# ╔═╡ aa908258-8857-47f8-a02a-223ebaebbc25
BigFloat(0.1)
# ╔═╡ 4b3b5aed-81aa-4209-acf6-56e620fc6f77
eps(BigFloat)
# ╔═╡ 17954bfc-d837-4fee-bff6-46e06fd3f2e2
methods(BigFloat)
# ╔═╡ 2bdc1e4b-3567-401e-911a-d130afec763e
eps(BigFloat)
# ╔═╡ d2a66af3-69f3-44d6-9e00-df49621e48cd
begin
#Lemma 2.1
T=range(1,10,10000)
List1=Float64[]
List2=Float64[]
for t in T
space=abs(nextfloat(t)-t)
theorem1=eps()*t/β
theorem2=eps()*t
push!(List1,space-theorem1)
push!(List2, theorem2-space)
end
end
# On remarque que List1 et List2 ne comportent que des valeurs positives. Ainsi, l'equation : theorem1<space<theorem2 est toujours verifiee donc l'ecart est au moins theorem1 et au plus theorem2
# ╔═╡ 48c622fe-7668-4856-99d5-8835c3abc96f
u=β^(1-53)/2
# ╔═╡ 94345a55-9af0-4d26-8e02-3c7745d5c1aa
begin
#Theorem 2.2
N=1000000
T2=range(-100.0,100.0,N)
List=BigFloat[]
for t in T2
push!(List, abs(BigFloat(t))*(1+u)-abs(t))
end
List
end
# ╔═╡ d187e660-e611-4378-a56c-99beab9a1d04
List
# ╔═╡ 65ada341-4656-4b4e-a92d-c77876cb484b
List==zeros(1000000)
# Why zeros ? Should be very small numbers but not 0 ...
# ╔═╡ 927f6ddb-7a23-4f64-bb13-3bcebd7f11da
#3.5
begin
bits=53
length=10
X=rand(BigFloat,length)
Y=rand(BigFloat,length)
X64,Y64=Float64[],Float64[]
γ1=length*u/(1-length*u)
n2=floor(log2(length)+1)
γ2=n2*u/(1-n2*u)
for i=1:length
push!(X64,ArbFloat(X[i],digits=bits)) # Forces X[i] to be of type Float64
push!(Y64,ArbFloat(Y[i],digits=bits))
end
R1=abs(dot(X,Y)-dot(X64,Y64))-γ1*dot(X,Y)
R2=abs(dot(X,Y)-dot(X64,Y64))-γ2*dot(X,Y)
#Le resultat est toujours negatif donc le theoreme est verifie
end
# ╔═╡ 79a39e0f-42dc-47d3-a0e8-618186a067b2
length(SUB)
# ╔═╡ 2a39d6e3-2193-4853-a2bb-27e046fcc8b0
length(NORM)
# ╔═╡ ce86cc71-b672-497e-8522-dc37c0b4c558
R1
# ╔═╡ 59ce7d31-59f2-4ce3-afe3-237222d87787
R2
# ╔═╡ 492c17c0-eb69-45bc-a81e-584fa531fb4a
#3.13
begin
Xm=rand(BigFloat,length,length)
Ym=rand(BigFloat,length,length)
Xm64,Ym64=zeros(length,length),zeros(length,length)
for i=1:length
for j=1:length
Xm64[i,j]=convert(Float64,Xm[i,j]) # Forces X[i] to be of type Float64
Ym64[i,j]=convert(Float64,Ym[i,j])
end
end
R3=norm(Xm*Ym-Xm64*Ym64)-γ1*norm(X)*norm(Y)
end
# Same here, the result is negative so the result is prooved.
# ╔═╡ 94d8f11f-7709-4abd-88a4-452ab627f3c4
# Theorem 2.4 : Ferguson
begin
y=rand(1:eps():100)
x=rand(y/2:eps():2y)
# x et y etant positifs, exp(x-y) est toujours plus petite que min(e(x), e(y) par decroissance de exp sur R)
exp(x-y)<=min(exp(x),exp(y))
xBF,yBF=BigFloat(x), BigFloat(y)
resBF=xBF-yBF
res64=x-y
resBF==res64
end
# ╔═╡ 6dfd7287-b29b-436b-8915-1a222aa2779d
# Theorem 2.5 : Sterbenz
begin
y2=rand(1:eps():100)
x2=rand(y2/2:eps():2y2)
x2BF,y2BF=BigFloat(0)+x2, BigFloat(0)+y2
res2BF=x2BF-y2BF
res2_64=x2-y2
res2BF==res2_64
end
# ╔═╡ a948aa0d-52cc-47c9-b5ef-5aa5279ceea3
y2
# ╔═╡ 28500fc3-05cb-4579-b813-4a3ab6ccca6d
y2BF
# ╔═╡ d137c95e-03a8-4f1c-99e0-ca7ae221891b
x2BF
# ╔═╡ 968bc05f-2a04-4482-97e5-2e003ce4ce2b
BigFloat(1):eps(BigFloat):BigFloat(100)
# ╔═╡ 9e3c1b5c-450e-4dbf-8734-ad24a4b3b43b
begin
dummy = reinterpret(Int64, y2)
bitstring(dummy)
end
# ╔═╡ 223c3fe2-6270-4a65-a650-1f8e48671b66
aa=56.33410477704777
# ╔═╡ d7e09d42-8e74-41bf-853f-9b47e3b4dfac
AA=BigFloat(aa)
# ╔═╡ b0d32787-32e1-4cdc-a151-c687a59d40d9
typeof(aa)
# ╔═╡ b12c26f3-5bc7-49e1-8034-ccbf31939e24
# Theorem 2.5 : Sterbenz
begin
y3=Float32(rand(1:eps(Float32):100))
x3=Float32(rand(y3/2:eps(Float32):2y3))
x3BF,y3BF=Float64(0)+x3, Float64(0)+y3
res3BF=x3BF-y3BF
res3_64=x3-y3
res3BF==res3_64
end
# ╔═╡ 9c608a66-07a8-4bab-af97-43a6e87e8bfd
x3
# ╔═╡ 1bcb7edf-eb29-4d5b-a075-33d89a72105b
begin
dummy3 = reinterpret(Int32, x3)
bitstring(dummy3)
end
# ╔═╡ 9285b9db-eeda-4faf-a87b-24e4346a2d44
begin
dummy4 = reinterpret(Int64, x3BF)
bitstring(dummy4)
end
# ╔═╡ 172ae28e-e211-43e6-a058-85dda27c3150
#take the bitstring and display the number it represents: code a function
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
ArbNumerics = "7e558dbc-694d-5a72-987c-6f4ebed21442"
ChangePrecision = "3cb15238-376d-56a3-8042-d33272777c9a"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Readables = "0d4725de-cd7c-5e44-8a85-a48caeef9fa5"
[compat]
ArbNumerics = "~1.2.6"
ChangePrecision = "~1.0.0"
Readables = "~0.3.3"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.2"
manifest_format = "2.0"
[[deps.ArbNumerics]]
deps = ["Arb_jll", "BinaryProvider", "FLINT_jll", "GMP_jll", "GenericLinearAlgebra", "Libdl", "LinearAlgebra", "MPFR_jll", "Printf", "Random", "Readables", "SpecialFunctions"]
git-tree-sha1 = "a347a64beec2d29e4587d3ff0352308dfb41e2cc"
uuid = "7e558dbc-694d-5a72-987c-6f4ebed21442"
version = "1.2.6"
[[deps.Arb_jll]]
deps = ["Artifacts", "FLINT_jll", "GMP_jll", "JLLWrappers", "Libdl", "MPFR_jll", "Pkg"]
git-tree-sha1 = "9f496547ec8d9e5caba4953984f32020d731dafb"
uuid = "d9960996-1013-53c9-9ba4-74a4155039c3"
version = "200.2200.0+0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "9950387274246d08af38f6eef8cb5480862a435f"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.14.0"
[[deps.ChangePrecision]]
deps = ["LinearAlgebra", "Random", "Statistics", "Test"]
git-tree-sha1 = "34b5f8c65ae773d3d3baa6c11833252edd15f476"
uuid = "3cb15238-376d-56a3-8042-d33272777c9a"
version = "1.0.0"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "bf98fa45a0a4cee295de98d4c1462be26345b9a1"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.2"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "b153278a25dd42c65abbf4e62344f9d22e59191b"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.43.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.FLINT_jll]]
deps = ["Artifacts", "GMP_jll", "JLLWrappers", "Libdl", "MPFR_jll", "OpenBLAS32_jll", "Pkg"]
git-tree-sha1 = "5c7f81ad197da216028a8e5793231acb55307ea2"
uuid = "e134572f-a0d5-539d-bddf-3cad8db41a82"
version = "200.800.401+1"
[[deps.GMP_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "781609d7-10c4-51f6-84f2-b8444358ff6d"
[[deps.GenericLinearAlgebra]]
deps = ["LinearAlgebra", "Printf", "Random", "libblastrampoline_jll"]
git-tree-sha1 = "67bf18c8c2548e4a61ed918dfb567e65997e0f00"
uuid = "14197337-ba66-59df-a3e3-ca00e7dcff7a"
version = "0.3.0"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "91b5dcf362c5add98049e6c29ee756910b03051d"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.3"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.1"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "a970d55c2ad8084ca317a4658ba6ce99b7523571"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.12"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MPFR_jll]]
deps = ["Artifacts", "GMP_jll", "Libdl"]
uuid = "3a97d323-0669-5f0c-9066-3539efd106a3"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.OpenBLAS32_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9c6c2ed4b7acd2137b878eb96c68e63b76199d0f"
uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2"
version = "0.3.17+0"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.3.0"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Readables]]
deps = ["Test"]
git-tree-sha1 = "9dde360267e7f5e0c292bbe14b7d034f7e617031"
uuid = "0d4725de-cd7c-5e44-8a85-a48caeef9fa5"
version = "0.3.3"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SpecialFunctions]]
deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"]
git-tree-sha1 = "5ba658aeecaaf96923dce0da9e703bd1fe7666f9"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "2.1.4"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# ╔═╡ Cell order:
# ╟─147ebec3-883c-4973-a1a0-fb37965c9fe1
# ╟─86157751-5ad7-4e7f-916e-6a4fcbbb8202
# ╟─bfcd47ae-fce4-49e9-812c-7f69df8d22c4
# ╠═786d2f3b-4546-4e25-9893-0155239e9a98
# ╠═0e2d9f4e-7dc2-4942-988a-8dc93134b2e6
# ╠═44b5ddae-218a-4f8c-9aba-59c15cae75e0
# ╠═c7021623-bac6-4aee-9796-545b015cde30
# ╠═3484778a-7c54-4942-a06e-0815394233d8
# ╟─8dc7096e-993e-4d9a-8aeb-c1f5ed6b59d8
# ╟─5806fd0d-3565-4ad8-8390-957d1fe3f8a9
# ╟─09e67f70-d191-4fbf-8bc9-397caa5d04ac
# ╟─cc5f6ccf-dc93-45db-adbb-1caa845767b7
# ╠═add47d72-b5b7-4796-ac07-dd62a2ebfbb8
# ╟─16434cb6-363a-4695-8903-a283c4167c5e
# ╠═b74284da-0655-4860-ae43-bed45c7db9b0
# ╠═708a479a-a7be-496b-ad00-9938e4075bd2
# ╠═8cd03276-0558-42e2-b7e4-3899634015a9
# ╠═79a39e0f-42dc-47d3-a0e8-618186a067b2
# ╠═0b7343a9-7658-4eb8-9d79-049643e0656a
# ╠═2a39d6e3-2193-4853-a2bb-27e046fcc8b0
# ╠═2c31f338-7aa4-4b85-9229-e1f6a1862172
# ╟─d850f6d7-334b-42cf-be6f-d6a4b010b522
# ╟─4658168a-9aec-4658-92f3-ca8cb05e1d51
# ╟─4b5e466c-a8ee-4e9e-88eb-9ece780ca06d
# ╟─dc2652af-251f-4b65-adb1-51ff9a4acd43
# ╠═6d372346-08c2-4ae4-9789-dc5757f29d54
# ╠═7582c9a5-f712-436c-a4c6-b99764f4ce67
# ╟─8c51345e-3e13-4055-8785-d0fe140eb666
# ╠═daab9208-fdbb-43c3-9a35-f43038fdd3dc
# ╟─8764c25b-5f82-4ce3-afd1-d9d08f709b57
# ╠═473c55b0-5e24-4efb-9795-208a0e5678b5
# ╠═a2caf82f-2b50-41fb-8800-891eb57d7408
# ╟─d8137e01-ed7a-4495-98c3-d2499acfec67
# ╠═3f264be2-b5e8-4d12-8973-7e78c252bcf4
# ╠═20a4f2dd-fb8d-4f7d-aa8e-41badf4d4d46
# ╠═10fb3477-494c-4295-8680-79c4587a009b
# ╠═9c2792ff-1ebf-4bc5-bd5f-77be63328531
# ╠═59598e55-1d6a-46c8-8a3b-2340506fc1ff
# ╠═4c7aa237-607c-4cb1-bda7-8ccb609a7b5d
# ╠═a526ed01-1339-46ce-99c8-d8f1b623d6f3
# ╠═d938c97a-cbe2-4f17-bcc4-939e53cdfd52
# ╟─c48e28e4-c07a-491a-bdb7-79ffa16fa39e
# ╠═29185555-69d1-4507-b5a3-0f0b7d03f24e
# ╟─a37a611e-1059-487b-95d8-92929783c926
# ╠═aa908258-8857-47f8-a02a-223ebaebbc25
# ╠═4b3b5aed-81aa-4209-acf6-56e620fc6f77
# ╠═17954bfc-d837-4fee-bff6-46e06fd3f2e2
# ╠═2bdc1e4b-3567-401e-911a-d130afec763e
# ╠═d2a66af3-69f3-44d6-9e00-df49621e48cd
# ╠═48c622fe-7668-4856-99d5-8835c3abc96f
# ╠═94345a55-9af0-4d26-8e02-3c7745d5c1aa
# ╠═d187e660-e611-4378-a56c-99beab9a1d04
# ╠═65ada341-4656-4b4e-a92d-c77876cb484b
# ╠═927f6ddb-7a23-4f64-bb13-3bcebd7f11da
# ╠═ce86cc71-b672-497e-8522-dc37c0b4c558
# ╠═59ce7d31-59f2-4ce3-afe3-237222d87787
# ╠═492c17c0-eb69-45bc-a81e-584fa531fb4a
# ╠═94d8f11f-7709-4abd-88a4-452ab627f3c4
# ╠═6dfd7287-b29b-436b-8915-1a222aa2779d
# ╠═a948aa0d-52cc-47c9-b5ef-5aa5279ceea3
# ╠═28500fc3-05cb-4579-b813-4a3ab6ccca6d
# ╠═d137c95e-03a8-4f1c-99e0-ca7ae221891b
# ╠═968bc05f-2a04-4482-97e5-2e003ce4ce2b
# ╠═9e3c1b5c-450e-4dbf-8734-ad24a4b3b43b
# ╠═223c3fe2-6270-4a65-a650-1f8e48671b66
# ╠═d7e09d42-8e74-41bf-853f-9b47e3b4dfac
# ╠═b0d32787-32e1-4cdc-a151-c687a59d40d9
# ╠═b12c26f3-5bc7-49e1-8034-ccbf31939e24
# ╠═9c608a66-07a8-4bab-af97-43a6e87e8bfd
# ╠═1bcb7edf-eb29-4d5b-a075-33d89a72105b
# ╠═9285b9db-eeda-4faf-a87b-24e4346a2d44
# ╠═172ae28e-e211-43e6-a058-85dda27c3150
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002