-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathprocess_mask.py
174 lines (136 loc) · 5.26 KB
/
process_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import numpy as np
from pulse import Pulse
import time
from threading import Lock, Thread
from plot_cont import DynamicPlot
from capture_frames import CaptureFrames
import pandas as pd
from matplotlib import pyplot as plt
from utils import *
import multiprocessing as mp
import sys
class ProcessMasks():
def __init__(self, sz=270, fs=30, bs=30, size=256):
print('init')
self.stop = False
self.masked_batches = []
self.batch_mean = []
self.signal_size = sz
self.batch_size = bs
self.signal = np.zeros((sz, 3))
self.pulse = Pulse(fs, sz, bs, size)
self.hrs = []
self.save_results = True
def __call__(self, pipe, plot_pipe, source):
self.pipe = pipe
self.plot_pipe = plot_pipe
self.source = source
compute_mean_thread = Thread(target=self.compute_mean)
compute_mean_thread.start()
extract_signal_thread = Thread(target=self.extract_signal)
extract_signal_thread.start()
self.rec_frames()
compute_mean_thread.join()
extract_signal_thread.join()
def rec_frames(self):
while True and not self.stop:
data = self.pipe.recv()
if data is None:
self.terminate()
break
batch = data[0]
self.masked_batches.append(batch)
def process_signal(self, batch_mean):
size = self.signal.shape[0]
b_size = batch_mean.shape[0]
self.signal[0:size-b_size] = self.signal[b_size:size]
self.signal[size-b_size:] = batch_mean
p = self.pulse.get_pulse(self.signal)
p = moving_avg(p, 6)
hr = self.pulse.get_rfft_hr(p)
if len(self.hrs) > 300: self.hrs.pop(0)
self.hrs.append(hr)
if self.plot_pipe is not None and self.stop:
self.plot_pipe.send(None)
elif self.plot_pipe is not None:
self.plot_pipe.send([p, self.hrs])
else:
hr_fft = moving_avg(self.hrs, 3)[-1] if len(self.hrs) > 5 else self.hrs[-1]
sys.stdout.write(f'\rHr: {round(hr_fft, 0)}')
sys.stdout.flush()
def extract_signal(self):
signal_extracted = 0
while True and not self.stop:
if len(self.batch_mean) == 0:
time.sleep(0.01)
continue
mean_dict = self.batch_mean.pop(0)
mean = mean_dict['mean']
if mean_dict['face_detected'] == False:
if self.plot_pipe is not None:
self.plot_pipe.send('no face detected')
continue
if signal_extracted >= self.signal_size:
self.process_signal(mean)
else:
self.signal[signal_extracted: signal_extracted + mean.shape[0]] = mean
signal_extracted+=mean.shape[0]
def compute_mean(self):
curr_batch_size = 0
batch = None
while True and not self.stop:
if len(self.masked_batches) == 0:
time.sleep(0.01)
continue
mask = self.masked_batches.pop(0)
if batch is None:
batch = np.zeros((self.batch_size, mask.shape[0], mask.shape[1], mask.shape[2]))
if curr_batch_size < (self.batch_size - 1):
batch[curr_batch_size] = mask
curr_batch_size+=1
continue
batch[curr_batch_size] = mask
curr_batch_size = 0
non_zero_pixels = (batch!=0).sum(axis=(1,2))
total_pixels = batch.shape[1] * batch.shape[2]
avg_skin_pixels = non_zero_pixels.mean()
m = {'face_detected': True, 'mean': np.zeros((self.batch_size, 3))}
if (avg_skin_pixels + 1) / (total_pixels) < 0.05:
m['face_detected'] = False
else:
m['mean'] = np.true_divide(batch.sum(axis=(1,2)), non_zero_pixels+1e-6)
self.batch_mean.append(m)
def terminate(self):
if self.plot_pipe is not None:
self.plot_pipe.send(None)
self.savePlot(self.source)
self.saveresults()
self.stop = True
def saveresults(self):
"""
saves numpy array of heart rates as hrs
saves numpy array of power spectrum as fft_spec
"""
np.save('hrs', np.array(self.hrs))
np.save('fft_spec', np.array(self.pulse.fft_spec))
def savePlot(self, path):
if self.save_results == False:
return
# path = path.replace ('/media/munawar/','/munawar-desktop/')
# fig_path = path[40:].replace("/","_")
# file_path = path.replace('video.avi','gt_HR.csv')
# gt_HR = pd.read_csv(file_path, index_col=False).values
if len(self.hrs) == 0:
return
ax1 = plt.subplot(1,1,1)
ax1.set_title('HR')
ax1.set_ylim([20, 180])
ax1.plot(moving_avg(self.hrs, 6))
# ax3 = plt.subplot(1,2,2)
# ax3.set_title('GT')
# ax3.set_ylim([20, 180])
# ax3.plot(gt_HR[8:])
plt.tight_layout()
plt.savefig(f'results.png')
plt.close()