-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths1cs2lib.py
88 lines (77 loc) · 3.92 KB
/
s1cs2lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from datetime import datetime
import os
import cartopy.crs as ccrs
import numpy as np
from scipy.interpolate import LinearNDInterpolator
from shapely import Polygon
import xarray as xa
from netCDF4 import Dataset
proj_nps = ccrs.NorthPolarStereo()
proj_pc = ccrs.PlateCarree()
class s1_nc_geolocation:
def __init__(self, ifile):
self.ifile = ifile
def read_geolocation(self, read_sar=False):
try_skip_last_rows = [None, -500, -1000, -2000, -3000, -4000, -5000, -6000, -7000]
with Dataset(self.ifile) as ds:
self.raw_shape = self.shape = ds.variables['sar_primary'].shape
self.sar_grid_line = ds['sar_grid_line'][:]
self.sar_grid_sample = ds['sar_grid_sample'][:]
self.sar_grid_latitude = ds['sar_grid_latitude'][:]
self.sar_grid_longitude = ds['sar_grid_longitude'][:]
self.shape_ratio = 1.0
if not read_sar:
return
for try_skip_last_row in try_skip_last_rows:
try:
self.sar_primary = ds['sar_primary'][:try_skip_last_row, :]
self.sar_secondary = ds['sar_secondary'][:try_skip_last_row, :]
read_success = True
print('Read success', try_skip_last_row)
break
except RuntimeError:
read_success = False
print('Read error', try_skip_last_row)
pass
if not read_success:
raise RuntimeError(f'Cannot read SAR data from {self.ifile}')
self.sar_mask = self.sar_primary.mask + (self.sar_primary.filled(-30) < -25)
good_line_index = np.nonzero(self.sar_grid_line < self.sar_primary.shape[0])[0]
self.sar_grid_line = self.sar_grid_line[good_line_index]
self.sar_grid_sample = self.sar_grid_sample[good_line_index]
self.sar_grid_latitude = self.sar_grid_latitude[good_line_index]
self.sar_grid_longitude = self.sar_grid_longitude[good_line_index]
self.shape = self.sar_primary.shape
self.shape_ratio = self.shape[0] / self.raw_shape[0]
def prepare_interpolators(self):
sar_grid_x, sar_grid_y, _ = proj_nps.transform_points(proj_pc, self.sar_grid_longitude, self.sar_grid_latitude).T
self.lndi_x = LinearNDInterpolator((self.sar_grid_line, self.sar_grid_sample), sar_grid_x)
self.lndi_y = LinearNDInterpolator((self.sar_grid_line, self.sar_grid_sample), sar_grid_y)
self.lndi_s = LinearNDInterpolator((sar_grid_x, sar_grid_y), self.sar_grid_sample)
self.lndi_l = LinearNDInterpolator((sar_grid_x, sar_grid_y), self.sar_grid_line)
def get_border(self, border_pixels=10):
border_line = np.hstack([
np.linspace(0, 0, border_pixels),
np.linspace(0, self.shape[0] - 1, border_pixels),
np.linspace(self.shape[0] - 1, self.shape[0] - 1, border_pixels),
np.linspace(self.shape[0] - 1, 0, border_pixels),
]).astype(int)
border_sample = np.hstack([
np.linspace(0, self.shape[1] - 1, border_pixels),
np.linspace(self.shape[1] - 1, self.shape[1] - 1, border_pixels),
np.linspace(self.shape[1] - 1, 0, border_pixels),
np.linspace(0, 0, border_pixels),
]).astype(int)
border_x = self.lndi_x((border_line, border_sample))
border_y = self.lndi_y((border_line, border_sample))
return border_x, border_y
def get_datetime(self):
return datetime.strptime(os.path.basename(self.ifile).split('_')[4], '%Y%m%dT%H%M%S')
def get_border_polygon(self):
border_x, border_y = self.get_border()
return Polygon(zip(border_x, border_y))
def labelize(sir, bins):
sir_labels = np.zeros(sir.shape, 'uint8') + 255
for class_no, (b0, b1) in enumerate(zip(bins[:-1], bins[1:])):
sir_labels[(sir >= b0) * (sir < b1)] = class_no
return sir_labels