forked from echonax07/MMSeaIce
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
142 lines (122 loc) · 5.65 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
__author__ = 'Muhammed Patel'
__contributor__ = 'Xinwwei chen, Fernando Pena Cantu,Javier Turnes, Eddie Park'
__copyright__ = ['university of waterloo']
__contact__ = ['[email protected]', '[email protected]']
__version__ = '1.0.0'
__date__ = '2024-04-05'
# -- Built-in modules -- #
import argparse
import json
import random
import os
import os.path as osp
import shutil
from icecream import ic
import pathlib
import numpy as np
import torch
from mmcv import Config, mkdir_or_exist
from tqdm import tqdm # Progress bar
import wandb
# Functions to calculate metrics and show the relevant chart colorbar.
from functions import compute_metrics, save_best_model, load_model, slide_inference, \
batched_slide_inference, water_edge_metric, class_decider
# Load consutme loss function
from losses import WaterConsistencyLoss
# Custom dataloaders for regular training and validation.
from loaders import (AI4ArcticChallengeDataset, AI4ArcticChallengeTestDataset,
get_variable_options)
# get_variable_options
from unet import UNet, Sep_feat_dif_stages # Convolutional Neural Network model
from swin_transformer import SwinTransformer # Swin Transformer
# -- Built-in modules -- #
from utils import colour_str
from test_upload_function import test
import segmentation_models_pytorch as smp
def parse_args():
parser = argparse.ArgumentParser(description='Train Default U-NET segmentor')
# Mandatory arguments
parser.add_argument('config', type=pathlib.Path, help='train config file path',)
parser.add_argument('checkpoint', type=pathlib.Path, help='checkpoint path of the model',)
parser.add_argument('--wandb-project', required=True, help='Name of wandb project')
parser.add_argument('--work-dir', help='the dir to save logs and models')
args = parser.parse_args()
return args
def main():
args = parse_args()
checkpoint_path = args.checkpoint
ic(args.config)
cfg = Config.fromfile(args.config)
train_options = cfg.train_options
# Get options for variables, amsrenv grid, cropping and upsampling.
train_options = get_variable_options(train_options)
# generate wandb run id, to be used to link the run with test_upload
id = wandb.util.generate_id()
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
if not train_options['cross_val_run']:
cfg.work_dir = osp.join('./work_dir',
osp.splitext(osp.basename(args.config))[0])
else:
# from utils import run_names
run_name = id
cfg.work_dir = osp.join('./work_dir',
osp.splitext(osp.basename(args.config))[0], run_name)
ic(cfg.work_dir)
# create work_dir
mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config)))
cfg_path = osp.join(cfg.work_dir, osp.basename(args.config))
# ### CUDA / GPU Setup
# Get GPU resources.
if torch.cuda.is_available():
print(colour_str('GPU available!', 'green'))
print('Total number of available devices: ',
colour_str(torch.cuda.device_count(), 'orange'))
device = torch.device(f"cuda:{train_options['gpu_id']}")
else:
print(colour_str('GPU not available.', 'red'))
device = torch.device('cpu')
print('GPU setup completed!')
if train_options['model_selection'] == 'unet':
net = UNet(options=train_options).to(device)
elif train_options['model_selection'] == 'swin':
net = SwinTransformer(options=train_options).to(device)
elif train_options['model_selection'] == 'h_unet':
from unet import H_UNet
net = H_UNet(options=train_options).to(device)
elif train_options['model_selection'] == 'h_unet_argmax':
from unet import H_UNet_argmax
net = H_UNet_argmax(options=train_options).to(device)
elif train_options['model_selection'] == 'Separate_decoder':
net = Sep_feat_dif_stages(options=train_options).to(device)
elif train_options['model_selection'] in ['UNet_regression', 'unet_regression']:
from unet import UNet_regression
net = UNet_regression(options=train_options).to(device)
elif train_options['model_selection'] in ['UNet_regression_all']:
from unet import UNet_regression_all
net = UNet_regression_all(options=train_options).to(device)
elif train_options['model_selection'] in ['UNet_sep_dec_regression', 'unet_sep_dec_regression']:
from unet import UNet_sep_dec_regression
net = UNet_sep_dec_regression(options=train_options).to(device)
elif train_options['model_selection'] in ['UNet_sep_dec_mse']:
from unet import UNet_sep_dec_mse
net = UNet_sep_dec_mse(options=train_options).to(device)
else:
raise 'Unknown model selected'
wandb.init(name=osp.splitext(osp.basename(args.config))[0] + '_inference', project=args.wandb_project,
entity="ai4arctic", config=train_options, id=id, resume="allow")
test(False, net, checkpoint_path, device, cfg, train_options['test_path_gt_embedded_json'])
# test(False, net, checkpoint_path, device, cfg, train_options['val_path'])
# todo
# this is for valset 2 visualization along with gt
# test(False, net, checkpoint_path, device, cfg, train_options['test_path'])
# finish the wandb run
wandb.finish()
if __name__ == '__main__':
main()