-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathReplayMemory.py
33 lines (23 loc) · 915 Bytes
/
ReplayMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from collections import deque
import random
import numpy as np
class ReplayMemory(object):
def __init__(self,max_size = 100000,random_seed = 123):
self.max_size = max_size
self.buffer = deque(maxlen = self.max_size)
random.seed(random_seed)
def add(self,state,action,reward,done,next_state):
exp = (state,action,reward,done,next_state)
self.buffer.append(exp)
def size(self):
return len(self.buffer)
def miniBatch(self,batch_size):
miniBatch = random.sample(self.buffer,min(len(self.buffer),batch_size))
state_batch = np.array([_[0] for _ in miniBatch])
action_batch = np.array([_[1] for _ in miniBatch])
reward_batch = np.array([_[2] for _ in miniBatch])
done_batch = np.array([_[3] for _ in miniBatch])
next_state_batch = np.array([_[4] for _ in miniBatch])
return state_batch,action_batch,reward_batch,done_batch,next_state_batch
def clear(self):
self.buffer.clear()