-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasetGen.py
92 lines (77 loc) · 3.54 KB
/
datasetGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#import cv2
import numpy as np
from sys import exit
from PIL import Image
import matplotlib.pyplot as plt
import random
## defining parameters
patchSize = 27 # rectangular patch with size patchSize*patchSize*channel
patchPerImg = 1000 # patches per image
numImage = 20 # number of images
totalPatch = patchPerImg * numImage
data = np.ones((totalPatch, patchSize, patchSize, 3), dtype = 'uint8') # all of the patches will be stored here
dataLoc = np.ones((totalPatch, 2), dtype = 'uint8') # location of the patches stores as (row, column)
dataLabel = np.ones((totalPatch), dtype = 'uint8') # label of the patches 0 - neg, 1 - pos
balance = 0.5 # balance between positive and negative patches
positive = int(patchPerImg * balance) # number of positive image in an image
negative = patchPerImg - positive # number of negative image in an image
## reading the image and mask
for i in range(1, numImage + 1):
imgNum = str(i)
if i < 10:
imgNum = '0' + imgNum
imgDir = "E:\\library of EEE\\4-2\\eee 426\\code\\dataDRIVE\\"
imgName = imgNum + '_test.tif'
img = Image.open('E:\\library of EEE\\4-2\\eee 426\\data\\DRIVE\\DRIVE\\test\\images\\' + imgName)
maskName = imgNum + '_test_mask.gif'
mask = Image.open('E:\\library of EEE\\4-2\\eee 426\\data\\DRIVE\\DRIVE\\test\\mask\\' + maskName)
gndTruthName = imgNum + '_manual1.gif'
gndTruth = Image.open('E:\\library of EEE\\4-2\\eee 426\\data\\DRIVE\\DRIVE\\test\\1st_manual\\' + gndTruthName)
## converting them to numpy array
img = np.array(img)
#img = np.array(img.getdata()).reshape(img.size[1], img.size[0], 3) # Image class store image as (width, height) but we want it as (row, column)
#img = img.astype('float32') / 255 # to see the image in plt
mask = mask.convert('RGB')
#mask = np.array(mask.getdata()).reshape(mask.size[1], mask.size[0], 3)
mask = np.array(mask)
#mask = mask.astype('float32') / 255
gndTruth = gndTruth.convert('RGB')
gndTruth = np.array(gndTruth)[:,:,0]
#gndTruth = gndTruth.astype('float32') / 255
## cutting out patches from the image
imgRow = img.shape[0]
imgCol = img.shape[1]
count = 0
ind = (i - 1) * patchPerImg
posCount = 0
negCount = 0
while count < patchPerImg:
r = int(round(random.uniform(0, img.shape[0])))
c = int(round(random.uniform(0, img.shape[1])))
rStart = r - patchSize // 2
rEnd = r + patchSize // 2 + 1
cStart = c - patchSize // 2
cEnd = c + patchSize // 2 + 1
if np.all(mask[rStart:rEnd, cStart:cEnd]) and r > 13 and r < imgRow - 14 and c > 13 and c < imgCol - 14:
label = gndTruth[r, c]
if label == 0:
if negCount == negative:
continue
else:
negCount += 1
else:
if posCount == positive:
continue
else:
posCount += 1
temp = img[rStart:rEnd, cStart:cEnd, :]
data[ind + count] = temp
dataLoc[ind + count] = np.array([r, c])
dataLabel[ind + count] = label
count += 1
#print(negCount, posCount)
print(np.count_nonzero(dataLabel))
## storing the images and data THE DATA IS STORED IN RGB FROMAT
np.save('E:\\library of EEE\\4-2\\eee 426\\data\\MSCprojectDataBase\\simpleClassifierDataBase\\DRIVEtestData', data)
np.save('E:\\library of EEE\\4-2\\eee 426\\data\\MSCprojectDataBase\\simpleClassifierDataBase\\DRIVEtestDataLcation', dataLoc)
np.save('E:\\library of EEE\\4-2\\eee 426\\data\\MSCprojectDataBase\\simpleClassifierDataBase\\DRIVEtestDataLabel', dataLabel)