-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataVisualization.py
35 lines (28 loc) · 1.07 KB
/
dataVisualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
from PIL import Image
from sys import exit
import matplotlib.pyplot as plt
data = np.load('E:\\library of EEE\\4-2\\eee 426\\data\\MSCprojectDataBase\\simpleClassifierDataBase\\DRIVEcl.npy')
data = data.astype('uint8')
#img = Image.fromarray(data[0])
#img.save('E:\\library of EEE\\4-2\\eee 426\\data\\MSCprojectDataBase\\simpleClassifierDataBase\\data.png')
## checking array size and data type
print(data.shape, data.dtype)
## checking the data value content
plt.hist(data.flatten(), bins = 20)
plt.show()
## plotting the data location to see the randomness
#print(dataLoc, dataLabel)
#plt.imshow(data[1], cmap = plt.cm.binary)
#plt.scatter(dataLoc[:,1], dataLoc[:,0])
#plt.axis([0, 563, 583, 0])
#plt.show()
## plotting the patches
fig = plt.figure(figsize = (6, 6))
fig.subplots_adjust(left = 0, right = 1, bottom = 0, top = 1, hspace = 0.05, wspace = 0.005)
l = np.random.randint(0, 20000, size = 42)
for i, j in enumerate(l):
ax = fig.add_subplot(7, 7, i + 1)
ax.imshow(data[j], cmap = 'binary')
plt.axis('off')
plt.show()