-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ssl.py
454 lines (389 loc) · 17.2 KB
/
main_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# coding=utf-8
import os
import sys
import time
import torch
import logging
import datetime
import warnings
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler
from torch.utils.tensorboard import SummaryWriter
from dataset import get_dataloader
from dataset.transforms import random_solarize_normalize
from models.utils import get_grad_norm
from models.model_zoo import get_ssl_model
from params import get_args, save_hp_to_json
from utils.lr_scheduler import lr_scheduler
from utils.meters import accuracy, AverageMeter
from utils.optim import get_parameter_groups, LARS
from utils.log import setup_primary_logging, setup_worker_logging
from utils.loss_ops import label_smoothing_CE, CrossEntropyLossSoft
from utils.misc import save_checkpoint, mkdir
from utils.distributed import (init_distributed_mode, get_rank, is_dist_avail_and_initialized,
is_master, set_random_seed)
# ignore some Pillow userwarning
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
best_acc1 = 0
def main(args):
"""main function"""
set_random_seed(args.seed)
mkdir(args.log_dir)
if args.is_log_grad and args.grad_log: mkdir(os.path.dirname(args.grad_log))
# Set multiprocessing type to spawn.
torch.multiprocessing.set_start_method('spawn')
# Set logger
log_queue = setup_primary_logging(os.path.join(args.log_dir, "log.txt"), logging.INFO)
# the number of gpus
args.ngpus_per_node = torch.cuda.device_count()
print("INFO: [CUDA] The number of GPUs in this node is {}".format(args.ngpus_per_node))
# Distributed training = training on more than one GPU.
# Also easily possible to extend to multiple nodes & multiple GPUs.
args.distributed = (args.gpu is None) and torch.cuda.is_available() and (not args.dp)
if args.distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args.ngpus_per_node, log_queue, args))
else:
# nn.DataParallel (DP)
if args.dp:
args.gpu, args.world_size = args.multigpu[0], len(args.multigpu)
else:
args.world_size = 1
main_worker(args.gpu, None, log_queue, args)
def main_worker(gpu, ngpus_per_node, log_queue, args):
"""main worker"""
# from dataset.dataloader import get_dataloader
global best_acc1
args.gpu = gpu
## ####################################
# distributed training initilization
## ####################################
global_rank = init_distributed_mode(args, ngpus_per_node, gpu)
setup_worker_logging(global_rank, log_queue, logging.INFO)
# Lock the random seed of the model to ensure that the model initialization of each process is the same.
set_random_seed(args.seed)
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
# save parameters
if is_master(): save_hp_to_json(args.log_dir, args)
## ####################################
# create model
## ####################################
model = get_ssl_model(args)
if not torch.cuda.is_available():
model.float()
logging.warning("using CPU, this will be slow")
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
model.cuda(args.gpu)
# Previously batch size and workers were global and not per GPU.
# args.batch_size = args.batch_size / ngpus_per_node)
# args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
if args.distributed and args.use_bn_sync:
logging.info('[CUDA] Using SyncBatchNorm...')
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu],
find_unused_parameters=False if args.slim_start_epoch < 0 else True)
if args.dp:
model = torch.nn.DataParallel(model, device_ids=args.multigpu)
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
# here use local_rank
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", get_rank() % ngpus_per_node)
## ####################################
# dataloader loading
## ####################################
train_loader, val_loader, test_loader = get_dataloader(args)
num_train_optimization_steps = (int(len(train_loader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.num_epochs
## ####################################
# optimization strategies
## ####################################
if getattr(args, 'label_smoothing', 0):
criterion = label_smoothing_CE().cuda(args.gpu)
else:
criterion = torch.nn.CrossEntropyLoss().cuda(args.gpu)
soft_criterion = None
# grouped_parameters = model.parameters()
grouped_parameters = get_parameter_groups(model, args.lr, args.weight_decay,
norm_weight_decay=0,
norm_bias_no_decay=True)
scaler = GradScaler() if args.precision == "amp" else None
logging.info('[optimizer] Using {} Optimizer...'.format(args.optimizer))
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(grouped_parameters,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True if args.nesterov else False
)
elif args.optimizer == 'LARS':
optimizer = LARS(grouped_parameters,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
else:
raise NotImplementedError
scheduler = lr_scheduler(mode=args.lr_mode,
init_lr=args.lr, all_iters=num_train_optimization_steps,
slow_start_iters=args.warmup_proportion * num_train_optimization_steps,
weight_decay=args.weight_decay,
lr_milestones=args.lr_milestones
)
## ####################################
# optionally resume from a checkpoint
## ####################################
start_epoch, global_step = 0, 0
if args.resume is not None:
if os.path.isfile(args.resume):
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = "cuda:{}".format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
sd = checkpoint["state_dict"]
if not args.distributed and next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
if not args.load_from_pretrained:
if "optimizer" in checkpoint and optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if "scaler" in checkpoint and scaler is not None:
logging.info("[resume] => Loading state_dict of AMP loss scaler")
scaler.load_state_dict(checkpoint['scaler'])
start_epoch, global_step = checkpoint["epoch"], checkpoint["global_step"]
logging.info(f"[resume] => loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})\n")
else:
logging.info("[resume] => no checkpoint found at '{}'\n".format(args.resume))
# create tensorboard logger
tf_writer = SummaryWriter(args.tensorboard_path) if is_master() else None
## ####################################
# train and evalution
## ####################################
all_start = time.time()
best_e = 0
save_epoch = 100 if args.ssl_arch == 'mocov2' else 50
for epoch in range(start_epoch, args.num_epochs):
if args.slim_start_epoch > 0 and epoch >= args.slim_start_epoch:
scheduler.init_lr = getattr(args, 'slim_start_lr', args.lr)
if is_dist_avail_and_initialized() and not args.is_dali:
train_loader.sampler.set_epoch(epoch)
if not args.slimmable_training:
global_step, train_top1 = train_epoch(train_loader, model, criterion, optimizer, epoch, global_step,
scheduler=scheduler, scaler=scaler, args=args)
else:
global_step, train_top1 = train_epoch_slim(train_loader, model, criterion, optimizer, epoch, global_step,
scheduler=scheduler, scaler=scaler, args=args,
tf_writer=tf_writer)
if is_master():
logging.info("Epoch %d/%s Finished.", epoch + 1, args.num_epochs)
if best_acc1 <= train_top1:
best_acc1 = train_top1
best_e = epoch
# save checkpoint
ckpt_dict = {
'epoch': epoch + 1,
'global_step': global_step,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}
if scaler is not None: ckpt_dict['scaler'] = scaler.state_dict()
save_checkpoint(ckpt_dict, False, args.log_dir, filename='ckpt.pth.tar')
if epoch > 0 and (epoch + 1) % save_epoch == 0:
save_checkpoint(ckpt_dict, False, args.log_dir, filename='ckpt_e{}.pth.tar'.format(epoch + 1))
# reset dali dataloader for each epoch
if args.is_dali: train_loader.reset()
if is_master():
if torch.cuda.is_available(): torch.cuda.synchronize()
all_time = time.time() - all_start
logging.info('The total running time of the program is {:.1f} Hour {:.1f} Minute\n'.format(all_time // 3600,
all_time % 3600 / 60))
logging.info('The maximum GPU memory occupied by this program is {:.2f} GB\n'.format(
torch.cuda.max_memory_allocated(0) * 1.0 / 1024 / 1024 / 1024))
logging.info("The best Top-1 Acc (Train) is: {:.2f}, best_e={}\n".format(
best_acc1, best_e))
print("The above program id is {}\n".format(args.log_dir))
torch.cuda.empty_cache()
def train_epoch(loader, model, criterion, optimizer, epoch, global_step,
scheduler=None, scaler=None, args=None):
samples_per_epoch = len(loader.dataset) if not args.is_dali else \
len(loader) * args.batch_size_per_gpu * args.world_size
step_per_epoch = len(loader)
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to train mode
model.train()
end = time.time()
train_start_t = time.time()
for step, data in enumerate(loader):
# perform accumulated gradient udpate
step_cond = step % args.gradient_accumulation_steps == 0
images_q = data[0][0] if not args.is_dali else data[0]['data_q']
images_k = data[0][1] if not args.is_dali else data[0]['data_k']
if args.gpu is not None:
images_q= images_q.cuda(args.gpu, non_blocking=True)
images_k = images_k.cuda(args.gpu, non_blocking=True)
# for mocov3, when using dali, aug2 does not do random solarize and normalize
if args.ssl_aug == 'mocov3' and args.is_dali:
images_k = random_solarize_normalize(images_k, p=0.2)
if scheduler is not None: scheduler(optimizer, epoch=epoch, global_step=global_step)
# measure data loading time
data_time = time.time() - end
with torch.cuda.amp.autocast(enabled = scaler is not None):
output_dict = model(im_q=images_q, im_k=images_k, criterion=criterion,
epoch=step / step_per_epoch + epoch)
# divide loss by gradient_accumulation_steps to accumulate gradient
loss = output_dict['loss'] / args.gradient_accumulation_steps
# compute gradient and do SGD step
if scaler is not None:
scaler.scale(loss).backward()
if step_cond:
if args.clip_grad_norm is not None:
# we should unscale the gradients of optimizer's assigned params if do gradient clipping
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
if step_cond:
if args.clip_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
optimizer.step()
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
output, target = output_dict['outputs'], output_dict['labels']
batch_size_now = images_q.size(0)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), batch_size_now)
top1.update(acc1[0], batch_size_now)
top5.update(acc5[0], batch_size_now)
# measure elapsed time
batch_time = time.time() - end
end = time.time()
if step_cond:
global_step += 1
if global_step % args.n_display == 0 and is_master():
percent_complete = step * 1.0 / step_per_epoch * 100
lr_tmp = optimizer.param_groups[0]['lr']
info_tmp = (f"Epoch: {epoch} [({percent_complete:.1f}%)] "
f"Loss: [{losses.avg:.3f}] Acc@1: [{top1.avg:.2f}] "
f"Data (t) {data_time:.3f} Batch (t) {batch_time:.2f} "
f"LR: {lr_tmp:.1e}".replace(', ]', ']'))
logging.info(info_tmp)
optimizer.zero_grad()
if torch.cuda.is_available(): torch.cuda.synchronize()
if is_master():
one_epoch_time = time.time() - train_start_t
logging.info('The total number of training samples for this device is {}'.format(top1.count))
logging.info('The total model train time for one epoch is is {:.2f} Seconds\n'.format(one_epoch_time))
logging.info('The throughout is {:.2f} images per second\n'.format(samples_per_epoch / one_epoch_time))
return global_step, top1.avg
def train_epoch_slim(loader, model, criterion, optimizer, epoch, global_step,
scheduler=None, scaler=None, soft_criterion=None, tf_writer=None,
args=None):
samples_per_epoch = len(loader.dataset) if not args.is_dali else \
len(loader) * args.batch_size_per_gpu * args.world_size
step_per_epoch = len(loader)
sorted_width_mult_list = sorted(args.width_mult_list, reverse=True)
# record the top1 accuray of all networks
m_top1_all, m_ce_all = [], []
for w in sorted_width_mult_list:
m_ce_all.append(AverageMeter('w{}_ce'.format(w), ':.4e'))
m_top1_all.append(AverageMeter('w{}_acc@1'.format(w), ':6.2f'))
# switch to train mode
model.train()
end = time.time()
train_start_t = time.time()
for step, data in enumerate(loader):
# perform accumulated gradient udpate
step_cond = step % args.gradient_accumulation_steps == 0
images_q = data[0][0] if not args.is_dali else data[0]['data_q']
images_k = data[0][1] if not args.is_dali else data[0]['data_k']
if args.gpu is not None:
images_q= images_q.cuda(args.gpu, non_blocking=True)
images_k = images_k.cuda(args.gpu, non_blocking=True)
if args.ssl_aug == 'mocov2_slim':
sweet_x = dict()
for i in range(1, len(sorted_width_mult_list)):
images_kx = data[i + 1] if not args.is_dali else data[0]['data_k{}'.format(i)]
sweet_x[sorted_width_mult_list[i]] = images_kx.cuda(args.gpu, non_blocking=True)
else:
sweet_x = None
if scheduler is not None: scheduler(optimizer, epoch=epoch, global_step=global_step)
# measure data loading time
data_time = time.time() - end
with torch.cuda.amp.autocast(enabled = scaler is not None):
output_dict = model(im_q=images_q, im_k=images_k, sweet_x=sweet_x,
criterion=criterion, epoch=step / step_per_epoch + epoch)
# divide loss by gradient_accumulation_steps to accumulate gradient
loss = output_dict['loss'] / args.gradient_accumulation_steps
# compute gradient and do SGD step
if scaler is not None:
scaler.scale(loss).backward()
if step_cond:
if args.clip_grad_norm is not None:
# we should unscale the gradients of optimizer's assigned params if do gradient clipping
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
if step_cond:
if args.clip_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
optimizer.step()
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
all_output, target = output_dict['outputs'], output_dict['labels']
all_losses = output_dict['all_losses']
batch_size_now = images_q.size(0)
acc_str, loss_str = '', ''
for i in range(len(sorted_width_mult_list)):
acc1, acc5 = accuracy(all_output[sorted_width_mult_list[i]], target, topk=(1, 5))
m_top1_all[i].update(acc1[0].item(), batch_size_now)
m_ce_all[i].update(all_losses[i].mean().item(), batch_size_now)
acc_str += '{:.2f}, '.format(m_top1_all[i].avg)
loss_str += '{:.3f}, '.format(m_ce_all[i].avg)
# measure elapsed time
batch_time = time.time() - end
end = time.time()
if step_cond:
global_step += 1
if global_step % args.n_display == 0 and is_master():
if args.is_log_grad:
get_grad_norm(model, sorted_width_mult_list, global_step, tf_writer=tf_writer, args=args)
num_samples = (step + 1) * batch_size_now * args.world_size
percent_complete = num_samples * 1.0 / samples_per_epoch * 100
lr_tmp = optimizer.param_groups[0]['lr']
info_tmp = (f"Epoch: {epoch} [({percent_complete:.1f}%)] "
f"Loss: [{loss_str}] Acc@1: [{acc_str}] "
f"Data (t) {data_time:.3f} Batch (t) {batch_time:.2f} "
f"LR: {lr_tmp:.1e}".replace(', ]', ']'))
logging.info(info_tmp)
optimizer.zero_grad()
if torch.cuda.is_available(): torch.cuda.synchronize()
if is_master():
one_epoch_time = time.time() - train_start_t
logging.info('The total number of training samples for this device is {}'.format(m_top1_all[0].count))
logging.info('The total model train time for one epoch is is {:.2f} Seconds\n'.format(one_epoch_time))
logging.info('The throughout is {:.2f} images per second\n'.format(samples_per_epoch / one_epoch_time))
return global_step, m_top1_all[0].avg
if __name__ == "__main__":
args = get_args()
if torch.cuda.is_available():
print('The CUDA version is {}'.format(torch.version.cuda))
# dataset
args.is_dali = os.path.exists(args.dali_data_dir)
main(args)
sys.exit(0)