-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeck.py
executable file
·428 lines (286 loc) · 6.63 KB
/
deck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#!/usr/bin/env python
from read import main
import os
import sys
import itertools
rows, columns = os.popen('stty size', 'r').read().split()
source = main()
def next_():
if len(sys.argv) != 2:
raw_input()
print "%c[2J" % (27)
try:
print source.next()
except StopIteration:
return
print "\n%s\n" % ("-" * int(columns))
next_()
# START
import this
next_()
print """
how the language evolves:
# peps
PEP stands for Python Enhancement Proposal. A PEP is a design document providing
information to the Python community, or describing a new feature for Python or
its processes or environment. The PEP should provide a concise technical
specification of the feature and a rationale for the feature.
We intend PEPs to be the primary mechanisms for proposing major new features,
for collecting community input on an issue, and for documenting the design
decisions that have gone into Python. The PEP author is responsible for building
consensus within the community and documenting dissenting opinions.
Pep 20: The Zen of Python
Pep 8: style guide
Pep 0257: Docstring Conventions
"""
next_()
# getting help
help(set)
next_()
# built-ins
# sets
set1 = set([1, 2, 3, 3])
set2 = set([2, 3, 4])
print set1 == set2
print set1 - set2
print set1.union(set2)
print set1.symmetric_difference(set2)
next_()
# batteries included
import heapq, random
elements = range(10)
print elements
random.shuffle(elements)
print elements
heapq.heapify(elements)
print elements
next_()
# collections
import collections
# defaultdict
dd = collections.defaultdict(list)
dd['matt'].append('so cool')
dd['matt'].append('so smooth')
dd['matt'].append('so fresh')
print dd['matt']
print dd['tom']
next_()
# namedtuple
People = collections.namedtuple('People', ['fields', 'of', 'people'])
new_person = People('people', 'of', 'fields')
print new_person.fields
next_()
# deque (say 'deck')
# efficient, double-ended queue
d = collections.deque('ghi')
d.append('j')
d.appendleft('f')
print d
next_()
# TODO
# ABC - abstract base class
# Super
# MRO
next_()
elements = ['one', 'two', 'three']
idx = 0
for i in elements:
print "%s(%d)" % (i, idx)
idx += 1
next_()
for idx, i in enumerate(elements):
print "%s(%d)" % (i, idx)
next_()
# generator doesn't expand the list
print range(10)
print xrange(10)
next_()
# list comprehension
print ["%s(%d)" % (i, idx) for idx, i in enumerate(elements)]
next_()
# generator comprehension
gen = ("%s(%d)" % (i, idx) for idx, i in enumerate(elements))
print gen
print list(gen)
next_()
# generators
def mygenerator():
yield "before"
for i in xrange(3):
yield i
yield "after"
for i in mygenerator():
print i
print list(mygenerator())
next_()
# itertools
print list(itertools.islice(mygenerator(), 1, 4))
next_()
def myfilter(x):
try:
int(x)
return True
except ValueError:
return False
print list(itertools.ifilter(myfilter, mygenerator()))
print list(itertools.ifilterfalse(myfilter, mygenerator()))
# generators are a form of continuation. they facilitate coroutines.
next_()
# protocols
# iterator
# __dunder__ "magic methods"
class MyIterator(object):
def __init__(self, high):
self.current = 0
self.high = high
def __iter__(self):
return self
def next(self):
if self.current > self.high:
raise StopIteration
else:
self.current += 1
return self.current - 1
for i in MyIterator(3):
print i
next_()
# decorators
def mydecorator(f):
def inside():
print "before dec"
f()
print "after_dec"
return inside
@mydecorator
def test():
print "inside"
test()
next_()
# descriptors
# http://docs.python.org/2/reference/datamodel.html#descriptors
class ReadOnly(object):
def __init__(self, initval=None, name='var'):
self.val = initval
self.name = name
def __set__(self, obj, val):
raise AttributeError('%s is read only.' % self.name)
class MyClass(object):
x = ReadOnly(10, 'var "x"')
y = 5
test = MyClass()
test.y = "z"
try:
test.x = "y"
except AttributeError, e:
print "%s(%s)" % (e.__class__.__name__, e)
next_()
# context managers
class Ctx(object):
def __enter__(self):
print "entering"
def __exit__(self, type, value, traceback):
print "exiting"
with Ctx():
print "inside!"
next_()
# contextlib
from contextlib import contextmanager
@contextmanager
def ctx():
print "before"
yield
print "after"
with ctx():
print "also inside."
next_()
# attributes
class Attr1(object):
pass
x = Attr1()
x.y = 1
print x.y
next_()
class Attr2(object):
# caled only when attribute lookup fails
def __getattr__(self, attr):
return "%s not found" % attr
x = Attr2()
x.y = 1
print x.y
print x.z
# we'll come back to this
print x.__dict__
next_()
class DangerAttr(object):
# caled always to look up attribute.
def __getattribute__(self, attr):
return "%s not found" % attr
x = DangerAttr()
x.y = 1
print x.y
print x.z
next_()
# everything is an object.
def testf():
pass
testf.permavalue = 1
print testf.__dict__
class X(object):
y = 2
X.classattr = 1
print X.__dict__
x = X()
# __getattr__ has a lookup list. first the instance and then the class tree
print x.__dict__
print x.y
# functions, classes, instances, all objects, behaving alike
next_()
# crazyshit
# type()
print "signature -> type(name, bases, dict)"
NewClass = type('NewClass', (object,), {'val': [1, 2, 3]})
print type(NewClass)
newone = NewClass()
print newone.val
next_()
def printme(self):
print self.val
NewClass2 = type('NewClass2', (NewClass,), {'printme': printme})
newtwo = NewClass2()
newtwo.printme()
next_()
# metaclasses
class metacls(type):
def __new__(mcs, name, bases, d):
d['foo'] = 'metacls was here'
return type.__new__(mcs, name, bases, d)
class Meta(object):
__metaclass__ = metacls
x = Meta()
print x.foo
next_()
# metaclass pt 2
# good for creating DSLs
class Attribute(object):
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
class printer(type):
def __new__(mcs, name, bases, d):
attrs = []
for i in d:
if isinstance(d[i], Attribute):
attrs.append(d[i])
for attr in attrs:
print "%s(%s)" % (d['implementation'], attr)
return type.__new__(mcs, name, bases, d)
class Meta2(object):
__metaclass__ = printer
implementation = "foobar"
attr1 = Attribute("sicknasty")
attr2 = Attribute("nastynasty")
x = Meta2()
next_()
print "DONE"
next_()