forked from HiFi-LoFi/FFTConvolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtilities.cpp
113 lines (102 loc) · 3.62 KB
/
Utilities.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// ==================================================================================
// Copyright (c) 2012 HiFi-LoFi
//
// This is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ==================================================================================
#include "Utilities.h"
namespace fftconvolver
{
bool SSEEnabled()
{
#if defined(FFTCONVOLVER_USE_SSE)
return true;
#else
return false;
#endif
}
void Sum(Sample* FFTCONVOLVER_RESTRICT result,
const Sample* FFTCONVOLVER_RESTRICT a,
const Sample* FFTCONVOLVER_RESTRICT b,
size_t len)
{
const size_t end4 = 4 * (len / 4);
for (size_t i=0; i<end4; i+=4)
{
result[i+0] = a[i+0] + b[i+0];
result[i+1] = a[i+1] + b[i+1];
result[i+2] = a[i+2] + b[i+2];
result[i+3] = a[i+3] + b[i+3];
}
for (size_t i=end4; i<len; ++i)
{
result[i] = a[i] + b[i];
}
}
void ComplexMultiplyAccumulate(SplitComplex& result, const SplitComplex& a, const SplitComplex& b)
{
assert(result.size() == a.size());
assert(result.size() == b.size());
ComplexMultiplyAccumulate(result.re(), result.im(), a.re(), a.im(), b.re(), b.im(), result.size());
}
void ComplexMultiplyAccumulate(Sample* FFTCONVOLVER_RESTRICT re,
Sample* FFTCONVOLVER_RESTRICT im,
const Sample* FFTCONVOLVER_RESTRICT reA,
const Sample* FFTCONVOLVER_RESTRICT imA,
const Sample* FFTCONVOLVER_RESTRICT reB,
const Sample* FFTCONVOLVER_RESTRICT imB,
const size_t len)
{
#if defined(FFTCONVOLVER_USE_SSE)
const size_t end4 = 4 * (len / 4);
for (size_t i=0; i<end4; i+=4)
{
const __m128 ra = _mm_load_ps(&reA[i]);
const __m128 rb = _mm_load_ps(&reB[i]);
const __m128 ia = _mm_load_ps(&imA[i]);
const __m128 ib = _mm_load_ps(&imB[i]);
__m128 real = _mm_load_ps(&re[i]);
__m128 imag = _mm_load_ps(&im[i]);
real = _mm_add_ps(real, _mm_mul_ps(ra, rb));
real = _mm_sub_ps(real, _mm_mul_ps(ia, ib));
_mm_store_ps(&re[i], real);
imag = _mm_add_ps(imag, _mm_mul_ps(ra, ib));
imag = _mm_add_ps(imag, _mm_mul_ps(ia, rb));
_mm_store_ps(&im[i], imag);
}
for (size_t i=end4; i<len; ++i)
{
re[i] += reA[i] * reB[i] - imA[i] * imB[i];
im[i] += reA[i] * imB[i] + imA[i] * reB[i];
}
#else
const size_t end4 = 4 * (len / 4);
for (size_t i=0; i<end4; i+=4)
{
re[i+0] += reA[i+0] * reB[i+0] - imA[i+0] * imB[i+0];
re[i+1] += reA[i+1] * reB[i+1] - imA[i+1] * imB[i+1];
re[i+2] += reA[i+2] * reB[i+2] - imA[i+2] * imB[i+2];
re[i+3] += reA[i+3] * reB[i+3] - imA[i+3] * imB[i+3];
im[i+0] += reA[i+0] * imB[i+0] + imA[i+0] * reB[i+0];
im[i+1] += reA[i+1] * imB[i+1] + imA[i+1] * reB[i+1];
im[i+2] += reA[i+2] * imB[i+2] + imA[i+2] * reB[i+2];
im[i+3] += reA[i+3] * imB[i+3] + imA[i+3] * reB[i+3];
}
for (size_t i=end4; i<len; ++i)
{
re[i] += reA[i] * reB[i] - imA[i] * imB[i];
im[i] += reA[i] * imB[i] + imA[i] * reB[i];
}
#endif
}
} // End of namespace fftconvolver