forked from HiFi-LoFi/FFTConvolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTwoStageFFTConvolver.cpp
executable file
·235 lines (196 loc) · 6.32 KB
/
TwoStageFFTConvolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// ==================================================================================
// Copyright (c) 2012 HiFi-LoFi
//
// This is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ==================================================================================
#include "TwoStageFFTConvolver.h"
#include <algorithm>
#include <cmath>
namespace fftconvolver
{
TwoStageFFTConvolver::TwoStageFFTConvolver() :
_headBlockSize(0),
_tailBlockSize(0),
_headConvolver(),
_tailConvolver0(),
_tailOutput0(),
_tailPrecalculated0(0),
_tailConvolver(),
_tailOutput(),
_tailPrecalculated(0),
_tailInput(),
_tailInputFill(0),
_precalculatedPos(0),
_backgroundProcessingInput()
{
}
TwoStageFFTConvolver::~TwoStageFFTConvolver()
{
reset();
}
void TwoStageFFTConvolver::reset()
{
_headBlockSize = 0;
_tailBlockSize = 0;
_headConvolver.reset();
_tailConvolver0.reset();
_tailOutput0.clear();
_tailPrecalculated0.clear();
_tailConvolver.reset();
_tailOutput.clear();
_tailPrecalculated.clear();
_tailInput.clear();
_tailInputFill = 0;
_tailInputFill = 0;
_precalculatedPos = 0;
_backgroundProcessingInput.clear();
}
bool TwoStageFFTConvolver::init(size_t headBlockSize,
size_t tailBlockSize,
const Sample* ir,
size_t irLen)
{
reset();
if (headBlockSize == 0 || tailBlockSize == 0)
{
return false;
}
headBlockSize = std::max(size_t(1), headBlockSize);
if (headBlockSize > tailBlockSize)
{
assert(false);
std::swap(headBlockSize, tailBlockSize);
}
// Ignore zeros at the end of the impulse response because they only waste computation time
while (irLen > 0 && ::fabs(ir[irLen-1]) < 0.000001f)
{
--irLen;
}
if (irLen == 0)
{
return true;
}
_headBlockSize = NextPowerOf2(headBlockSize);
_tailBlockSize = NextPowerOf2(tailBlockSize);
const size_t headIrLen = std::min(irLen, _tailBlockSize);
_headConvolver.init(_headBlockSize, ir, headIrLen);
if (irLen > _tailBlockSize)
{
const size_t conv1IrLen = std::min(irLen-_tailBlockSize, _tailBlockSize);
_tailConvolver0.init(_headBlockSize, ir+_tailBlockSize, conv1IrLen);
_tailOutput0.resize(_tailBlockSize);
_tailPrecalculated0.resize(_tailBlockSize);
}
if (irLen > 2 * _tailBlockSize)
{
const size_t tailIrLen = irLen - (2*_tailBlockSize);
_tailConvolver.init(_tailBlockSize, ir+(2*_tailBlockSize), tailIrLen);
_tailOutput.resize(_tailBlockSize);
_tailPrecalculated.resize(_tailBlockSize);
_backgroundProcessingInput.resize(_tailBlockSize);
}
if (_tailPrecalculated0.size() > 0 || _tailPrecalculated.size() > 0)
{
_tailInput.resize(_tailBlockSize);
}
_tailInputFill = 0;
_precalculatedPos = 0;
return true;
}
void TwoStageFFTConvolver::process(const Sample* input, Sample* output, size_t len)
{
// Head
_headConvolver.process(input, output, len);
// Tail
if (_tailInput.size() > 0)
{
size_t processed = 0;
while (processed < len)
{
const size_t remaining = len - processed;
const size_t processing = std::min(remaining, _headBlockSize - (_tailInputFill % _headBlockSize));
assert(_tailInputFill + processing <= _tailBlockSize);
// Sum head and tail
const size_t sumBegin = processed;
const size_t sumEnd = processed + processing;
{
// Sum: 1st tail block
if (_tailPrecalculated0.size() > 0)
{
size_t precalculatedPos = _precalculatedPos;
for (size_t i=sumBegin; i<sumEnd; ++i)
{
output[i] += _tailPrecalculated0[precalculatedPos];
++precalculatedPos;
}
}
// Sum: 2nd-Nth tail block
if (_tailPrecalculated.size() > 0)
{
size_t precalculatedPos = _precalculatedPos;
for (size_t i=sumBegin; i<sumEnd; ++i)
{
output[i] += _tailPrecalculated[precalculatedPos];
++precalculatedPos;
}
}
_precalculatedPos += processing;
}
// Fill input buffer for tail convolution
::memcpy(_tailInput.data()+_tailInputFill, input+processed, processing * sizeof(Sample));
_tailInputFill += processing;
assert(_tailInputFill <= _tailBlockSize);
// Convolution: 1st tail block
if (_tailPrecalculated0.size() > 0 && _tailInputFill % _headBlockSize == 0)
{
assert(_tailInputFill >= _headBlockSize);
const size_t blockOffset = _tailInputFill - _headBlockSize;
_tailConvolver0.process(_tailInput.data()+blockOffset, _tailOutput0.data()+blockOffset, _headBlockSize);
if (_tailInputFill == _tailBlockSize)
{
SampleBuffer::Swap(_tailPrecalculated0, _tailOutput0);
}
}
// Convolution: 2nd-Nth tail block (might be done in some background thread)
if (_tailPrecalculated.size() > 0 &&
_tailInputFill == _tailBlockSize &&
_backgroundProcessingInput.size() == _tailBlockSize &&
_tailOutput.size() == _tailBlockSize)
{
waitForBackgroundProcessing();
SampleBuffer::Swap(_tailPrecalculated, _tailOutput);
_backgroundProcessingInput.copyFrom(_tailInput);
startBackgroundProcessing();
}
if (_tailInputFill == _tailBlockSize)
{
_tailInputFill = 0;
_precalculatedPos = 0;
}
processed += processing;
}
}
}
void TwoStageFFTConvolver::startBackgroundProcessing()
{
doBackgroundProcessing();
}
void TwoStageFFTConvolver::waitForBackgroundProcessing()
{
}
void TwoStageFFTConvolver::doBackgroundProcessing()
{
_tailConvolver.process(_backgroundProcessingInput.data(), _tailOutput.data(), _tailBlockSize);
}
} // End of namespace fftconvolver