-
Notifications
You must be signed in to change notification settings - Fork 3
/
tcn_audio_metrical_structure.py
83 lines (74 loc) · 3.51 KB
/
tcn_audio_metrical_structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch.nn as nn
import torch
import torch.nn.functional as F
from mir.nn.data_storage import FramedRAMDataStorage
from mir.nn.data_provider import DataProvider, default_collate, data_type_fix
from mir.nn.train import NetworkBehavior, NetworkInterface
from mir.nn.data_provider import FramedDataProvider, data_type_fix
from modules.vae import Reparameterizer
from crf import CRFDecoder
import numpy as np
from simple_tcn import TCN, TCNBlock
from mir.nn.data_decorator import NoPitchShifter
from metrical_crf import get_binary_transition
TRAIN_LENGTH = 1024
class TCNClassifier(NetworkBehavior):
def __init__(self, in_channels, hidden_dim, n_layers, n_classes, dropout, max_seq_length=8192, remap_offset=None):
super().__init__()
self.max_seq_length = max_seq_length
self.pre_tcn = nn.Sequential(
TCNBlock(in_channels, hidden_dim, 1, dropout),
nn.MaxPool1d(2),
TCNBlock(hidden_dim, hidden_dim, 1, dropout),
nn.MaxPool1d(2),
TCNBlock(hidden_dim, hidden_dim, 1, dropout),
nn.MaxPool1d(2),
)
self.tcn = TCN(hidden_dim, hidden_dim, n_layers, dropout)
self.linear = nn.Linear(hidden_dim, n_classes)
self.n_classes = n_classes
self.transition, self.z_to_layer = get_binary_transition(
np.array([-np.inf, -np.inf, -np.inf, -np.inf, -15.0, -15.0, -15.0, -15.0]),
np.array([-np.inf, -np.inf, -np.inf, -np.inf, -20.0, -20.0, -20.0, -20.0]),
)
self.crf = CRFDecoder(torch.tensor(self.transition), transition_as_parameter=True)
self.remap_offset = remap_offset
def forward(self, x):
h = self.pre_tcn(x.transpose(1, 2)).transpose(1, 2)
h = self.tcn(h)
return F.log_softmax(self.linear(h), dim=-1)
def loss(self, x):
batch_size, seq_length, _ = x.shape
x = x.view(batch_size, seq_length * 8, -1)
log_prob = self(x)
log_obs = log_prob[:, :, self.z_to_layer]
return self.crf.neg_log_likelihood_batch(log_obs).mean()
def inference(self, x):
seq_length, _ = x.shape
x = x.view(1, seq_length * 8, -1)
log_prob = self(x)
return log_prob.squeeze(0).cpu().numpy()
if __name__ == '__main__':
model_name = 'tcn_audio_metrical_v1.0_crf'
# train_provider, val_provider = get_providers('rwc_multitrack_hierarchy_v5_semi')
storage_x = FramedRAMDataStorage('osu_beat_aligned_stft_div_4_8')
song_count = storage_x.get_length()
is_valid = np.ones(song_count,dtype=np.bool)
for i in range(song_count):
if (i % 5 == 0):
is_valid[i]=False
train_indices=np.arange(song_count)[is_valid]
val_indices=np.arange(song_count)[np.bitwise_not(is_valid)]
trainer = NetworkInterface(TCNClassifier(513, 256, 6, 9, 0.5),
model_name, load_checkpoint=True)
train_provider=FramedDataProvider(train_sample_length=TRAIN_LENGTH,shift_low=0,shift_high=0,sample_step=2)
train_provider.link(storage_x, NoPitchShifter(), subrange=train_indices)
val_provider=FramedDataProvider(train_sample_length=TRAIN_LENGTH,shift_low=0,shift_high=0,sample_step=2)
val_provider.link(storage_x, NoPitchShifter(), subrange=val_indices)
trainer.train_supervised(train_provider,
val_provider,
batch_size=16,
learning_rates_dict={1e-4: 2000},
round_per_print=100,
round_per_val=500,
round_per_save=1000)