-
Notifications
You must be signed in to change notification settings - Fork 5
/
results.py
204 lines (189 loc) · 8.02 KB
/
results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import os
from complex_chord import ChordTypeLimit,Chord,NUM_TO_ABS_SCALE
import mir_eval
from settings import JAM_DATASET_PATH
import matplotlib.pyplot as plt
MAX_CLASS_SIZE=13
chord_limit=ChordTypeLimit(
triad_limit=6,
seventh_limit=3,
ninth_limit=3,
eleventh_limit=2,
thirteenth_limit=2
)
def get_names_values_to_plot(total,correct,l0,categories):
values=[]
sample_counts=[]
l0_counts=[]
names=[]
for k in categories:
if(k==0):
range_obj=range(chord_limit.triad_limit+1)
name_list=['N','maj','min','sus4','sus2','dim','aug']
elif(k==1):
range_obj=[x+1 for x in [2,3,4,5,7,9,10,11]]
name_list=['/2','/b3','/3','/4','/5','/6','/b7','/7']#['N']+NUM_TO_ABS_SCALE
elif(k==2):
range_obj=range(1,chord_limit.seventh_limit+1)
name_list=['+7','+b7','+bb7']
elif(k==3):
range_obj=range(1,chord_limit.ninth_limit+1)
name_list=['+9','+#9','+b9']
elif(k==4):
range_obj=range(1,chord_limit.eleventh_limit+1)
name_list=['+11','+#11']
elif(k==5):
range_obj=range(1,chord_limit.thirteenth_limit+1)
name_list=['+13','+b13']
else:
raise NotImplementedError()
for i,j in enumerate(range_obj):
names.append(name_list[i])
values.append(correct[k,j]/total[k,j])
sample_counts.append(total[k,j]*12)
l0_counts.append(l0[k,j])
return names,values,sample_counts,l0_counts
def read_chordlab_from_file(file_name):
f = open(file_name, 'r')
content = f.read()
lines=content.split('\n')
f.close()
result=[]
for i in range(len(lines)):
line=lines[i].strip()
if(line==''):
continue
tokens=line.split('\t')
assert(len(tokens)==3)
result.append([float(tokens[0]),float(tokens[1]),tokens[2]])
return result
def process_folder(folder_est,folder_ref):
ref_files=os.listdir(folder_ref)
result=[]
for file in ref_files:
try:
ref=read_chordlab_from_file(os.path.join(folder_ref,file))
est=read_chordlab_from_file(os.path.join(folder_est,file))
result.append((est,ref))
except:
print('Warning: comparison failure: %s'%file)
return result
def split_chordlab(chordlab):
return (np.array([[data[0],data[1]] for data in chordlab],dtype=np.float64),[data[2] for data in chordlab])
def compute_part_recall_single(chordlab_est,chordlab_ref):
total=np.zeros((6,MAX_CLASS_SIZE))
correct=np.zeros((6,MAX_CLASS_SIZE))
(gd_intervals,gd_labels) = split_chordlab(chordlab_ref)
(est_intervals,est_labels) = split_chordlab(chordlab_est)
est_intervals,est_labels = mir_eval.util.adjust_intervals(est_intervals,est_labels,gd_intervals.min(),gd_intervals.max(),start_label='X',end_label='X')
(intervals,gd_labels,est_labels)=mir_eval.util.merge_labeled_intervals(gd_intervals,gd_labels,est_intervals,est_labels)
durations = mir_eval.util.intervals_to_durations(intervals)
for (duration,gd_label,est_label) in zip(durations,gd_labels,est_labels):
ref_xchord=Chord(gd_label).to_numpy()
est_xchord=Chord(est_label).to_numpy()
for k in range(6):
ref_id=ref_xchord[k]
est_id=est_xchord[k]
if(k==0):
ref_id=(ref_id+11)//12
est_id=(est_id+11)//12
#else:
# if((ref_xchord[0]+11)//12!=(est_xchord[0]+11)//12):
# continue #todo: counting error
if(k==1):
ref_id+=1
est_id+=1
if(ref_id>0):
ref_id=((ref_id-ref_xchord[0])%12+12)%12+1
if(est_id>0):
est_id=((est_id-est_xchord[0])%12+12)%12+1
if(ref_id>=0):
total[k,ref_id]+=duration
if(ref_id==est_id):
correct[k,ref_id]+=duration
return total,correct
def compute_part_recall(pool):
total=np.zeros((6,MAX_CLASS_SIZE))
correct=np.zeros((6,MAX_CLASS_SIZE))
l0=np.zeros((6,MAX_CLASS_SIZE))
for (chordlab_est,chordlab_ref) in pool:
cur_total,cur_correct=compute_part_recall_single(chordlab_est,chordlab_ref)
total+=cur_total
correct+=cur_correct
l0+=(cur_total>0)
return total,correct,l0
def plot_result(names,values,sample_counts,l0_counts):
x=np.arange(len(names))
fig, ax = plt.subplots()
ax2 = ax.twinx()
ax2.bar(x,l0_counts,color='b', zorder=1)
ax2.set_ylabel(r"Number of Appearance in Distinct Songs", labelpad=10)
#ax2.set_yscale('log')
ax.set_zorder(ax2.get_zorder()+1)
ax.patch.set_visible(False)
#bar = ax.bar(x,values,0.8,align="center")
plot = ax.plot(x,values,color='r',marker='o', zorder=100)
ax.set_xticks(x)
ax.set_xticklabels(names)
ax.set_title(r"Evaluation on Chord Components")
ax.set_ylabel(r"Chord Component Recall", labelpad=10)
ax.set_xlabel("Chord Component Label",labelpad=10)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
ax.set_ylim([0.0,1.0])
plt.show()
def plot_multiple_results(model_template,legend_list,name_list,plot_id):
from figures import FIG_OUTPUT_PATH
from mir import cache
try:
values_list,names,sample_counts,l0_counts=cache.load('figure_data_upd2')
except:
values_list=[]
for filename in name_list:
pool=process_folder((model_template%filename).replace('[d]','%d'),
os.path.join(JAM_DATASET_PATH,'chordlab')+'/')
total,correct,l0=compute_part_recall(pool)
names,values,sample_counts,l0_counts=get_names_values_to_plot(total,correct,l0,[0,1,2,3,4,5])
values_list.append(values)
cache.save((values_list,names,sample_counts,l0_counts),'figure_data_upd2')
x=np.arange(len(names))
plt.rcParams.update({'font.size': 12})
fig, ax = plt.subplots(figsize=(16,4))
if(plot_id==1):
ax2 = ax.twinx()
ax2.bar(x,l0_counts,color='#cccccc', zorder=1)
ax2.set_ylabel(r"Number of Appearances in Distinct Songs", labelpad=10)
#ax2.set_yscale('log')
ax.set_zorder(ax2.get_zorder()+1)
ax.patch.set_visible(False)
#bar = ax.bar(x,values,0.8,align="center")
for i,filename in enumerate(name_list):
plot = ax.plot(x,values_list[i],marker='ov^s*<>'[i],markersize=8, zorder=100,label=legend_list[i])
ax.set_ylabel(r"Chord Component Recall", labelpad=10)
ax.set_ylim([0.0,1.0])
ax.legend()
else:
ax.bar(x,l0_counts,color='#9c9c9c', zorder=1)
ax.set_ylabel(r"Number of Appearances in Distinct Songs", labelpad=10)
ax.set_xticks(x)
ax.set_xticklabels(names)
#ax.set_title(r"Evaluation on Chord Components")
ax.set_xlabel("Chord Component Label",labelpad=10)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
if(plot_id==1):
fig.savefig(os.path.join(FIG_OUTPUT_PATH,'component_recall.pdf'), transparent=True, pad_inches=0,bbox_inches='tight')
else:
fig.savefig(os.path.join(FIG_OUTPUT_PATH,'sample_count_song_level.pdf'), transparent=True, pad_inches=0,bbox_inches='tight')
plt.show()
if __name__ == '__main__':
plot_multiple_results("output/output_joint_chord_net_ismir_naive_v1.0_reweight(%.1f,%.1f)_s[d].best_hmm_full/jam/",
['no_reweight','(0.3,10.0)','(0.5,10.0)','(0.7,20.0)','(1.0,20.0)'],[(0.0,10.0),(0.3,10.0),(0.5,10.0),(0.7,20.0),(1.0,20.0)],
plot_id=1)
#pool=process_folder("output/output_joint_chord_net_ismir_naive_v1.0_reweight(1.0,20.0)_s%d.best_hmm_full/jam/",
# os.path.join(JAM_DATASET_PATH,'chordlab')+'/')
#total,correct,l0=compute_part_recall(pool)
#names,values,sample_counts,l0_counts=get_names_values_to_plot(total,correct,l0,[0,1,2,3,4,5])
#print(names,values,sample_counts,l0_counts)
#plot_result(names,values,sample_counts,l0_counts)