-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_preprocess.py
194 lines (179 loc) · 8.2 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import os
import pretty_midi
from joblib import Parallel, delayed
from settings import LMD_MATCHED_FOLDER
import matplotlib.pyplot as plt
def is_good_midi(file_name):
try:
midi = pretty_midi.PrettyMIDI(file_name)
except:
return False
has_drum = False
for ins in midi.instruments:
if (ins.is_drum):
has_drum = True
break
if (len(midi.instruments) < 6 or not has_drum):
return False
for i, ins in enumerate(midi.instruments):
lower_name = ins.name.lower()
if (lower_name == 'mel' or 'melody' in lower_name or 'vocal' in lower_name):
return True
return False
def process_folder(folder, files):
for file in files:
file_path = os.path.join(LMD_MATCHED_FOLDER, folder, file)
if (is_good_midi(file_path)):
return os.path.join(folder, file)
return None
def preprocess_lmd_dataset():
file_dict = set()
folder_list = []
for dir1 in os.listdir(LMD_MATCHED_FOLDER):
if not (os.path.isdir(os.path.join(LMD_MATCHED_FOLDER, dir1))):
continue
for dir2 in os.listdir(os.path.join(LMD_MATCHED_FOLDER, dir1)):
for dir3 in os.listdir(os.path.join(LMD_MATCHED_FOLDER, dir1, dir2)):
for dir4 in os.listdir(os.path.join(LMD_MATCHED_FOLDER, dir1, dir2, dir3)):
files = []
for file in os.listdir(os.path.join(LMD_MATCHED_FOLDER, dir1, dir2, dir3, dir4)):
if not (file in file_dict):
files.append(file)
file_dict.add(file)
if (len(files) > 0):
folder_list.append([os.path.join(dir1, dir2, dir3, dir4), files])
result = Parallel(n_jobs=24, verbose=1)(delayed(process_folder)(folder[0], folder[1]) for folder in folder_list)
f = open('data/lmd_matched_usable_midi.txt', 'w')
for file in result:
if (file is not None):
f.write(file + '\n')
f.close()
def get_quantized_melody(ins, boundaries):
piano_roll = np.zeros((len(boundaries), ), dtype=np.int16)
if (ins.is_drum):
return piano_roll
for note in ins.notes:
start_bin = np.searchsorted(boundaries, note.start)
end_bin = np.searchsorted(boundaries, note.end)
if (end_bin == start_bin):
end_bin += 1
piano_roll[start_bin:end_bin] = np.maximum(piano_roll[start_bin:end_bin], 1)
piano_roll[start_bin:start_bin + 1] = note.pitch + 2
return piano_roll
def get_piano_roll(ins, boundaries, onset_only, ignore_drums=True, ignore_non_drums=False):
piano_roll = np.zeros((len(boundaries), 128), dtype=bool)
if ((ins.is_drum and ignore_drums) or (not ins.is_drum and ignore_non_drums)):
return piano_roll
for note in ins.notes:
start_bin = np.searchsorted(boundaries, note.start)
if (onset_only):
piano_roll[start_bin:start_bin + 1, note.pitch] = True
else:
end_bin = np.searchsorted(boundaries, note.end)
if (end_bin == start_bin):
end_bin += 1
piano_roll[start_bin:end_bin, note.pitch] = True
return piano_roll
def get_drum_roll(midi, boundaries):
drum_roll = np.zeros((len(boundaries), 128), dtype=bool)
for ins in midi.instruments:
if (ins.is_drum):
for note in ins.notes:
start_bin = np.searchsorted(boundaries, note.start)
drum_roll[start_bin:start_bin + 1, note.pitch] = True
return drum_roll
def prepare_quantization(midi, subbeat_count=4):
'''
:param midi:
:param subbeat_count:
:return:
'''
beats = midi.get_beats()
downbeats = midi.get_downbeats()
n_beat = len(beats)
n_subbeat = (n_beat - 1) * subbeat_count + 1
subbeat_indices = np.arange(n_subbeat) / subbeat_count
subbeat_time = np.interp(subbeat_indices, np.arange(n_beat), beats)
boundaries = (subbeat_time[1:] + subbeat_time[:-1]) / 2
is_downbeat = np.zeros(n_subbeat, dtype=bool)
downbeat_bins = np.searchsorted(boundaries, downbeats)
is_downbeat[downbeat_bins] = True
return n_subbeat, downbeat_bins, boundaries, subbeat_time
def extract_features(seed, file_name, melody_track_id, subbeat_count=4, context_length=64, max_results=20, show=-1):
midi = pretty_midi.PrettyMIDI(os.path.join(LMD_MATCHED_FOLDER, file_name))
n_subbeat, downbeat_bins, boundaries, _ = prepare_quantization(midi, subbeat_count)
piano_rolls = np.stack([get_piano_roll(ins, boundaries, False) for ins in midi.instruments], axis=0)
melody = get_quantized_melody(midi.instruments[melody_track_id], boundaries)
drum_rolls = get_drum_roll(midi, boundaries)
cymbals = np.logical_or(drum_rolls[:, 49], drum_rolls[:, 57])
ins_activity = piano_rolls.sum(axis=2)
activity = np.concatenate([ins_activity.T, drum_rolls], axis=1)
non_zero_activity = activity[:, activity.sum(axis=0) > 0] > 0
results = [[], []]
last_downbeat_bin = 0
for i, downbeat_bin in enumerate(downbeat_bins):
if (i > 0 and last_downbeat_bin + 4 < downbeat_bin):
non_zero_activity[last_downbeat_bin:downbeat_bin] = np.max(non_zero_activity[last_downbeat_bin + 2:downbeat_bin - 2], axis=0, keepdims=True)
last_downbeat_bin = downbeat_bin
for i, downbeat_bin in enumerate(downbeat_bins):
context_left = downbeat_bin - context_length
context_right = downbeat_bin + context_length
if (context_left >= 0 and context_right < n_subbeat):
if (np.any(melody[context_left: downbeat_bin]) or
np.any(melody[downbeat_bin: context_right])):
entry_points = np.sum(
np.all(non_zero_activity[context_left: downbeat_bin] == 0, axis=0) *
np.all(non_zero_activity[downbeat_bin: context_right] != 0, axis=0)
)
exit_points = np.sum(
np.all(non_zero_activity[context_left: downbeat_bin] != 0, axis=0) *
np.all(non_zero_activity[downbeat_bin: context_right] == 0, axis=0)
)
label = cymbals[downbeat_bin] > 0
labels = [label, entry_points, exit_points]
results[1 if np.any(labels) else 0].append(
np.concatenate((labels + [non_zero_activity.shape[1]], melody[context_left:context_right]))
)
np.random.seed(seed)
final_results = []
for k in [0, 1]:
if (len(results[k]) > 0):
results[k] = np.stack(results[k], axis=0)
final_results.append(
results[k][np.random.choice(np.arange(len(results[k])), min(max_results, len(results[k])), replace=False)])
else:
return None
if (show >= 0):
piano_roll = np.eye(130)[melody]
length = min(show, n_subbeat - 1)
plt.figure(figsize=(26, 6))
plt.imshow(np.logjical_or(piano_roll[:length], cymbals[:length, None]).T)
plt.title(os.path.basename(file_name))
plt.gca().invert_yaxis()
plt.show()
return np.concatenate(final_results, axis=0)
def extract_all_features_split(lines, indices, out_file, show):
results = []
for t, i in enumerate(indices):
if (t % 100 == 0):
print('Processing %s %d / %d' % (out_file, t, len(indices)), flush=True)
(file, melody_track_id) = lines[i]
result = extract_features(i, file, int(melody_track_id), show=show)
if (result is not None):
results.append(result)
print('Concatenating', flush=True)
np.save(out_file, np.concatenate(results, axis=0))
print('Done %s' % out_file, flush=True)
def extract_all_features(show=-1):
f = open('data/lmd_matched_with_melody.txt', 'r')
lines = [line.strip().split('\t') for line in f.readlines() if line.strip() != '']
f.close()
n_songs = len(lines)
val_indices = np.arange(0, n_songs, 5)
train_indices = np.setdiff1d(np.arange(0, n_songs), val_indices)
extract_all_features_split(lines, train_indices, 'data/lmd_entry_exit_train_v3.npy', show)
extract_all_features_split(lines, val_indices, 'data/lmd_entry_exit_val_v3.npy', show)
if __name__ == '__main__':
preprocess_lmd_dataset()
# extract_all_features(False)