-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathtrain.py
116 lines (104 loc) · 5.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python
"""Train ANN"""
import sys
import glob
import datetime
import time
import pickle
from numpy import array, zeros, r_
from numpy.random import seed, randn
from cost_function import cost_function, gradients
from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imread, imresize
from configuration import CLASSIFICATION_LABELS_AND_VALUES, IMAGE_DIMENSIONS
from configuration import LAMBDA, HIDDEN_LAYER_SIZE, CLASSIFICATION_LABELS
def load_images_to_array(classification_label_and_values):
"""Loads images to array"""
training_image_array = array([zeros(IMAGE_DIMENSIONS[0] * IMAGE_DIMENSIONS[1])])
training_image_value = array([[0, 0, 0, 0, 0]])
print("Loading images to array...")
for class_label, class_value in classification_label_and_values.iteritems():
for filename in glob.glob("./"+class_label+"/*"):
image_array = imread(filename, flatten=True)
resized_image_array = imresize(image_array, IMAGE_DIMENSIONS)
training_image_array = r_[training_image_array, [resized_image_array.flatten()]]
training_image_value = r_[training_image_value, [class_value]]
return (training_image_array, training_image_value)
def cost_function_wrapper(theta, cost_function_parameters):
"""Wrapper for the Cost Function"""
cost_function_parameters['theta'] = theta
return cost_function(cost_function_parameters)
def gradients_wrapper(theta, gradient_parameters):
"""Wrapper for Gradients"""
gradient_parameters['theta'] = theta
return gradients(gradient_parameters)
def prepare_function_parameters(input_parameters, training_parameters):
"""Prepare function parameters using input and training parameters"""
function_parameters = {}
function_parameters = input_parameters.copy()
function_parameters.update(training_parameters)
return function_parameters
def prepare_input_parameters(input_layer_size, hidden_layer_size, number_of_labels,
lambda_value):
"""Prepare input parameters as a dictionary"""
input_parameters = {}
input_parameters['input_layer_size'] = input_layer_size
input_parameters['hidden_layer_size'] = hidden_layer_size
input_parameters['number_of_labels'] = number_of_labels
input_parameters['lambda_value'] = lambda_value
return input_parameters
def prepare_training_parameters(x_values, y_values):
"""Prepare training parameters"""
training_parameters = {}
training_parameters['x_values'] = x_values
training_parameters['y_values'] = y_values
return training_parameters
def initialize_theta(input_layer_size, hidden_layer_size, number_of_labels):
"""Initialize theta with samples from a standard normal distribution"""
seed(0)
return randn(((input_layer_size + 1) * hidden_layer_size) +
((hidden_layer_size + 1) * number_of_labels))
def minimize_cost_function(initial_theta, function_parameters):
"""Minimize the Cost Function"""
return fmin_l_bfgs_b(cost_function_wrapper, initial_theta,
fprime=gradients_wrapper, args=[function_parameters])
def save_model(hidden_layer_size, optimized_theta, lambda_value):
"""Save the model"""
model = {'hidden_layer_size': hidden_layer_size, 'optimized_theta': optimized_theta,
'lambda_value': lambda_value}
timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d_%H-%M-%S')
lambda_value_and_hidden_layers = "_l" + str(lambda_value) + "_h" + str(hidden_layer_size)
timestamp_with_lambda_value = timestamp + lambda_value_and_hidden_layers
model_filename = "model_" + timestamp_with_lambda_value + ".pkl"
with open("optimized_thetas/" + model_filename, 'wb') as output_file:
pickle.dump(model, output_file, pickle.HIGHEST_PROTOCOL)
def main():
"""Main function"""
lambda_value = LAMBDA
hidden_layer_size = HIDDEN_LAYER_SIZE
try:
lambda_value = float(sys.argv[1])
hidden_layer_size = int(sys.argv[2])
except(NameError, IndexError):
print("Unspecified Lambda value and hidden layer size")
image_array, image_values = load_images_to_array(CLASSIFICATION_LABELS_AND_VALUES)
number_of_labels = len(CLASSIFICATION_LABELS)
x_values = image_array[1:, :]
y_values = image_values[1:, :]
input_layer_size = x_values.shape[1]
initial_theta = initialize_theta(input_layer_size, hidden_layer_size,
number_of_labels)
input_parameters = prepare_input_parameters(input_layer_size,
hidden_layer_size,
number_of_labels,
lambda_value)
training_parameters = prepare_training_parameters(x_values, y_values)
function_parameters = prepare_function_parameters(input_parameters,
training_parameters)
(optimized_theta, function_min_value, info_dict) = minimize_cost_function(initial_theta,
function_parameters)
print(function_min_value)
print(info_dict)
save_model(hidden_layer_size, optimized_theta, lambda_value)
if __name__ == '__main__':
main()