-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
73 lines (61 loc) · 2.37 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import sys
from data_import import read_conllu_file
from torch.autograd import Variable
from mst import mst_one_out_root
from collections import defaultdict
if __name__ == "__main__":
(w2i, i2w, t2i, i2t, l2i, i2l, sentences,
index_sentences, golden_labels) = read_conllu_file(sys.argv[1])
model = torch.load(sys.argv[2])
s = nn.Softmax()
model.w2i = defaultdict(lambda: 0, model.w2i)
model.t2i = defaultdict(lambda: 0, model.t2i)
for z, (sentence, _, _) in enumerate(sentences):
input_words = []
input_pos = []
for k in sentence:
input_words.append(model.w2i[sentence[k][0]])
input_pos.append(model.t2i[sentence[k][1]])
input_words = Variable(torch.LongTensor(input_words))
input_pos = Variable(torch.LongTensor(input_pos))
M, L = model(input_words, input_pos, [])
t_out_M = torch.t(M)
predicted_M = torch.t(s(t_out_M))
graph = {}
for i in range(M.size(1)):
sg = {}
for k in range(M.size(0)):
sg[k] = predicted_M[i, k].data[0]
if i == 0:
sg[k] = 0
graph[i] = sg
out_graph = mst_one_out_root(graph)
labels_input = []
to_from_mapping = {}
for k in out_graph:
for l in out_graph[k]:
labels_input.append([k, l, '_'])
M, L = model(input_words, input_pos, labels_input)
_, indices = torch.max(s(L), 1)
new_sentence = {}
for i in sentence:
if sentence[i][2] == '_':
new_sentence[i] = [sentence[i][5],
sentence[i][4],
sentence[i][1],
'_',
'_']
continue
for j, (f, t, _) in enumerate(labels_input):
if int(sentence[i][5]) == t:
new_sentence[i] = [sentence[i][5],
sentence[i][4],
sentence[i][1],
f,
model.i2l[indices[j].data[0]]]
for i in new_sentence:
string = '{}\t{}\t_\t_\t{}\t_\t{}\t{}\t_\t'.format(*new_sentence[i])
print(string)
print()