-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmst_Tim_Dozat.py
248 lines (221 loc) · 8.35 KB
/
mst_Tim_Dozat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
#***************************************************************
#===============================================================
def find_cycles(edges):
""""""
vertices = np.arange(len(edges))
indices = np.zeros_like(vertices) - 1
lowlinks = np.zeros_like(vertices) - 1
stack = []
onstack = np.zeros_like(vertices, dtype=np.bool)
current_index = 0
cycles = []
#-------------------------------------------------------------
def strong_connect(vertex, current_index):
""""""
indices[vertex] = current_index
lowlinks[vertex] = current_index
stack.append(vertex)
current_index += 1
onstack[vertex] = True
for vertex_ in np.where(edges == vertex)[0]:
if indices[vertex_] == -1:
current_index = strong_connect(vertex_, current_index)
lowlinks[vertex] = min(lowlinks[vertex], lowlinks[vertex_])
elif onstack[vertex_]:
lowlinks[vertex] = min(lowlinks[vertex], indices[vertex_])
if lowlinks[vertex] == indices[vertex]:
cycle = []
vertex_ = -1
while vertex_ != vertex:
vertex_ = stack.pop()
onstack[vertex_] = False
cycle.append(vertex_)
if len(cycle) > 1:
cycles.append(np.array(cycle))
return current_index
#-------------------------------------------------------------
for vertex in vertices:
if indices[vertex] == -1:
current_index = strong_connect(vertex, current_index)
return cycles
#===============================================================
def find_roots(edges):
""""""
return np.where(edges[1:] == 0)[0]+1
#***************************************************************
def argmax(probs):
""""""
edges = np.argmax(probs, axis=1)
return edges
#===============================================================
def greedy(probs):
""""""
edges = np.argmax(probs, axis=1)
cycles = True
while cycles:
cycles = find_cycles(edges)
for cycle_vertices in cycles:
# Get the best heads and their probabilities
cycle_edges = edges[cycle_vertices]
cycle_probs = probs[cycle_vertices, cycle_edges]
# Get the second-best edges and their probabilities
probs[cycle_vertices, cycle_edges] = 0
backoff_edges = np.argmax(probs[cycle_vertices], axis=1)
backoff_probs = probs[cycle_vertices, backoff_edges]
probs[cycle_vertices, cycle_edges] = cycle_probs
# Find the node in the cycle that the model is the least confident about and its probability
new_root_in_cycle = np.argmax(backoff_probs/cycle_probs)
new_cycle_root = cycle_vertices[new_root_in_cycle]
# Set the new root
probs[new_cycle_root, cycle_edges[new_root_in_cycle]] = 0
edges[new_cycle_root] = backoff_edges[new_root_in_cycle]
return edges
#===============================================================
def chu_liu_edmonds(probs):
""""""
vertices = np.arange(len(probs))
edges = np.argmax(probs, axis=1)
cycles = find_cycles(edges)
if cycles:
#print("found cycle, fixing...")
#print('vertices', vertices)
#print('cycles', cycles)
# (c)
cycle_vertices = cycles.pop()
#print('cyce_vertices', cycle_vertices)
# (nc)
non_cycle_vertices = np.delete(vertices, cycle_vertices)
#print('non_cycle_vertices', non_cycle_vertices)
#-----------------------------------------------------------
# (c)
cycle_edges = edges[cycle_vertices]
#print('cycle_edges', cycle_edges)
# get rid of cycle nodes
# (nc x nc)
non_cycle_probs = np.array(probs[non_cycle_vertices,:][:,non_cycle_vertices])
#print('probs', probs)
#print('non_cycle_probs', non_cycle_probs)
# add a node representing the cycle
# (nc+1 x nc+1)
non_cycle_probs = np.pad(non_cycle_probs, [[0,1], [0,1]], 'constant')
#print('non_cycle_probs', non_cycle_probs)
# probabilities of heads outside the cycle
# (c x nc) / (c x 1) = (c x nc)
backoff_cycle_probs = probs[cycle_vertices][:,non_cycle_vertices] / probs[cycle_vertices,cycle_edges][:,None]
#print('backoff_cycle_probs', backoff_cycle_probs)
# probability of a node inside the cycle depending on something outside the cycle
# max_0(c x nc) = (nc)
non_cycle_probs[-1,:-1] = np.max(backoff_cycle_probs, axis=0)
#print('non_cycle_probs', non_cycle_probs)
# probability of a node outside the cycle depending on something inside the cycle
# max_1(nc x c) = (nc)
non_cycle_probs[:-1,-1] = np.max(probs[non_cycle_vertices][:,cycle_vertices], axis=1)
#print('non_cycle_probs', non_cycle_probs)
#-----------------------------------------------------------
# (nc+1)
non_cycle_edges = chu_liu_edmonds(non_cycle_probs)
#print('non_cycle_edges', non_cycle_edges)
# This is the best source vertex into the cycle
non_cycle_root, non_cycle_edges = non_cycle_edges[-1], non_cycle_edges[:-1] # in (nc)
#print('non_cycle_root', non_cycle_root)
source_vertex = non_cycle_vertices[non_cycle_root] # in (v)
#print('source_vertex', source_vertex)
# This is the vertex in the cycle we want to change
cycle_root = np.argmax(backoff_cycle_probs[:,non_cycle_root]) # in (c)
#print('cycle_root', cycle_root)
target_vertex = cycle_vertices[cycle_root] # in (v)
#print('target_vertex', target_vertex)
edges[target_vertex] = source_vertex
#print('edges', edges)
# update edges with any other changes
# things thad don't go to cycle
mask = np.where(non_cycle_edges < len(non_cycle_probs)-1)
#print('non_cycle_edges', non_cycle_edges)
#print('len(non_cycle_probs)', len(non_cycle_probs))
#print('mask', mask)
edges[non_cycle_vertices[mask]] = non_cycle_vertices[non_cycle_edges[mask]]
#print('edges', edges)
# Things with heads the cycle
mask = np.where(non_cycle_edges == len(non_cycle_probs)-1)
#print('mask', mask)
stuff = np.argmax(probs[non_cycle_vertices][:,cycle_vertices], axis=1)
#print('probs[non_cycle_vertices][:,cycle_vertices]', probs[non_cycle_vertices][:,cycle_vertices])
stuff2 = cycle_vertices[stuff]
stuff3 = non_cycle_vertices[mask]
#print('stuff:', stuff, len(stuff))
#print('stuff2:', stuff2, len(stuff2))
#print('stuff3:', stuff3, len(stuff3))
#print('edges', edges, len(edges))
edges[stuff3] = stuff2[mask]
return edges
#===============================================================
def nonprojective(probs):
""""""
probs *= 1-np.eye(len(probs)).astype(np.float32)
probs[0] = 0
probs[0,0] = 1
probs /= np.sum(probs, axis=1, keepdims=True)
edges = chu_liu_edmonds(probs)
#edges = greedy(probs)
roots = find_roots(edges)
best_edges = edges
best_score = -np.inf
if len(roots) > 1:
for root in range(1, len(probs)):
probs_ = make_root(probs, root)
edges_ = chu_liu_edmonds(probs_)
#edges_ = greedy(probs_)
score = score_edges(probs_, edges_)
if score > best_score:
best_edges = edges_
best_score = score
return best_edges
#===============================================================
def make_root(probs, root):
""""""
probs = np.array(probs)
probs[1:,0] = 0
probs[root,:] = 0
probs[root,0] = 1
probs /= np.sum(probs, axis=1, keepdims=True)
return probs
#===============================================================
def score_edges(probs, edges):
""""""
return np.sum(np.log(probs[np.arange(1,len(probs)), edges[1:]]))
#***************************************************************
def main():
def softmax(x):
x -= np.max(x, axis=1, keepdims=True)
x = np.exp(x)
return x / np.sum(x, axis=1, keepdims=True)
probs = softmax(np.random.randn(5,5))
probs *= 1-np.eye(len(probs)).astype(np.float32)
probs[0] = 0
probs[0,0] = 1
probs /= np.sum(probs, axis=1, keepdims=True)
edges = nonprojective(probs)
roots = find_roots(edges)
best_edges = edges
best_score = -np.inf
if len(roots) > 1:
for root in roots:
probs_ = make_root(probs, root)
edges_ = nonprojective(probs_)
score = score_edges(probs_, edges_)
if score > best_score:
best_edges = edges_
best_score = score
edges = best_edges
print(edges)
print(np.arange(len(edges)))
print(find_cycles(edges))
print(find_roots(edges))
if __name__ == '__main__':
main()