-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics_calculator.py
203 lines (179 loc) · 8.54 KB
/
metrics_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import glob
import logging
import os.path as osp
import numpy as np
import lpips
from tqdm import tqdm
from utils.misc import set_random_seed, get_time_str
from utils.logger import get_root_logger
from metrics.psnr_ssim import calculate_psnr, calculate_ssim
from utils.img_utils import tensor2img, imfrombytes, img2tensor
from networks.archs.tca_arch import flow_warp
from networks.archs.pwc_arch import PWCNet
gts_dict = {
'reds4': './dataset/REDS4/GT',
'vid4': './dataset/Vid4/GT',
'spmc30': './dataset/SPMC30/GT',
'vimeo90kt': './dataset/Vimeo90KT/GT',
'udm10': './dataset/UDM10/GT'
}
vimeo90kt_test_meta_info = './data/meta_info/meta_info_vimeo90k_test.txt'
class Metrics_calculator:
def __init__(self,
flow_model, lpips_model, logger, reds4_srs_path, vid4_srs_path, spmc_srs_path, vimeo90kt_srs_path,
udm10_srs_path, exp_name=None):
super(Metrics_calculator, self).__init__()
# paths and check list
self.reds4_check_list = ['000', '011', '015', '020']
self.vid4_check_list = ['calendar', 'city', 'foliage', 'walk']
# generate spmc check list
self.spmc_check_list = []
spmc_subdirs = glob.glob(osp.join(gts_dict['spmc30'], '*'))
for subdir in spmc_subdirs:
_, dirname = osp.split(subdir)
self.spmc_check_list.append(dirname)
# generate vimeo90kt check list
self.vimeo90kt_check_list = []
with open(vimeo90kt_test_meta_info, 'r') as fin:
subfolders = [line.split(' ')[0] for line in fin] # 000/000
for subfolder in subfolders:
self.vimeo90kt_check_list.append(subfolder)
# generate udm10 check list
self.udm10_check_list = []
udm_subdirs = glob.glob(osp.join(gts_dict['udm10'], '*'))
for subdir in udm_subdirs:
_, dirname = osp.split(subdir)
self.udm10_check_list.append(dirname)
self.reds4_srs_path = reds4_srs_path
self.vid4_srs_path = vid4_srs_path
self.spmc_srs_path = spmc_srs_path
self.vimeo90kt_srs_path = vimeo90kt_srs_path
self.udm10_srs_path = udm10_srs_path
self.logger = logger
self.flow_model = flow_model
self.loss_fn_vgg = lpips_model
self.exp_name = exp_name
# init accumulators
self.psnr = []
self.ssim = []
self.lpips = []
assert self.exp_name is not None
self.logger.info(f'### Metrics for {self.exp_name} \n')
def metrics_accumulator_init(self):
self.psnr = []
self.ssim = []
self.lpips = []
def calculate_metrics_on(self, check_type, srs_path, check_list, crop_border=None, y_channel=True):
with torch.no_grad():
pbar = tqdm(total=len(check_list), unit='clip')
for check in check_list:
pbar.update(1)
pbar.set_description(f'{check}')
srs_list = sorted(glob.glob(osp.join(srs_path, check, '*')))
hrs_list = sorted(glob.glob(osp.join(gts_dict[check_type], check, '*.png')))
for i in range(len(srs_list)):
#
f = open(srs_list[i], 'rb')
sr = f.read()
sr = imfrombytes(sr, srs_list[i], float32=True)
sr = img2tensor(sr).unsqueeze(0).cuda()
#
f = open(hrs_list[i], 'rb')
hr = f.read()
hr = imfrombytes(hr, hrs_list[i], float32=True)
hr = img2tensor(hr).unsqueeze(0).cuda()
#
flow = self.flow_model(sr, hr)
a_hr = flow_warp(hr, flow.permute(0, 2, 3, 1))
# crop
if crop_border is not None:
c_sr = sr[:, :, crop_border:-crop_border, crop_border:-crop_border]
ca_hr = a_hr[:, :, crop_border:-crop_border, crop_border:-crop_border]
else:
c_sr = sr
ca_hr = a_hr
psnr = calculate_psnr(tensor2img(c_sr), tensor2img(ca_hr), crop_border=0, test_y_channel=y_channel)
ssim = calculate_ssim(tensor2img(c_sr), tensor2img(ca_hr), crop_border=0, test_y_channel=y_channel)
lpips = self.loss_fn_vgg(c_sr, ca_hr)
self.psnr.append(psnr)
self.ssim.append(ssim)
self.lpips.append(lpips.cpu().numpy())
def compute_metrics(self):
#
if self.reds4_srs_path is not None:
self.logger.info('### REDS4 \n')
self.calculate_metrics_on('reds4', self.reds4_srs_path, self.reds4_check_list, 12, False)
self.statistic_and_log()
self.metrics_accumulator_init()
#
if self.vid4_srs_path is not None:
self.logger.info('### Vid4 \n')
self.calculate_metrics_on('vid4', self.vid4_srs_path, self.vid4_check_list, 12, True)
self.statistic_and_log()
self.metrics_accumulator_init()
#
if self.spmc_srs_path is not None:
self.logger.info('### SPMC-30 \n')
self.calculate_metrics_on('spmc30', self.spmc_srs_path, self.spmc_check_list, 12, True)
self.statistic_and_log()
self.metrics_accumulator_init()
#
if self.udm10_srs_path is not None:
self.logger.info('### UDM10 \n')
self.calculate_metrics_on('udm10', self.udm10_srs_path, self.udm10_check_list, 12, True)
self.statistic_and_log()
self.metrics_accumulator_init()
#
if self.vimeo90kt_srs_path is not None:
self.logger.info('### Vimeo90KT \n')
self.calculate_metrics_on('vimeo90kt', self.vimeo90kt_srs_path, self.vimeo90kt_check_list, 12, True)
self.statistic_and_log()
self.metrics_accumulator_init()
def statistic_and_log(self):
psnr = np.asarray(self.psnr).mean()
ssim = np.asarray(self.ssim).mean()
lpips = np.asarray(self.lpips).mean()
self.logger.info(f"PSNR {psnr}\n"
f"SSIM {ssim}\n"
f"LPIPS {lpips}\n")
if __name__ == '__main__':
#
pwc_checkpoint_path = './checkpoints/pwc-default'
flow_model = PWCNet(pretrained=pwc_checkpoint_path)
flow_model = flow_model.cuda()
flow_model.eval()
#
loss_fn_vgg = lpips.LPIPS(net='vgg').cuda()
#
exp_time = get_time_str()
log_file = osp.join(f"./{exp_time}-tca_bi4x_metrics_statistics.txt")
exp_name = 'tca_bi4x_metrics_statistics'
logger = get_root_logger(log_level=logging.INFO, log_file=log_file)
#
set_random_seed(1)
#
reds4_srs_path = './results/tca_reds_bi4x_model_reds4_inference/visualization/REDS4/'
spmc_srs_path = './results/tca_vimeo90k_bi4x_model_vid4_vimeo90kt_spmc30_inference/visualization/SPMC30'
vid4_srs_path = './results/tca_vimeo90k_bi4x_model_vid4_vimeo90kt_spmc30_inference/visualization/Vid4'
vimeo90kt_srs_path = './results/tca_vimeo90k_bi4x_model_vid4_vimeo90kt_spmc30_inference/visualization/Vimeo90KT'
udm10_srs_path = None
metrics_calc = Metrics_calculator(flow_model, loss_fn_vgg, logger, reds4_srs_path, vid4_srs_path,
spmc_srs_path, vimeo90kt_srs_path, udm10_srs_path, exp_name)
metrics_calc.compute_metrics()
# BD
exp_time = get_time_str()
log_file = osp.join(f"./{exp_time}-tca_bd4x_metrics_statistics.txt")
exp_name = 'tca_bd4x_metrics_statistics'
logger = get_root_logger(log_level=logging.INFO, log_file=log_file)
#
set_random_seed(1)
#
reds4_srs_path = None
spmc_srs_path = './results/tca_vimeo90k_bd4x_model_udm10_vid4_vimeo90kt_spmc30_inference/visualization/SPMC30'
vid4_srs_path = './results/tca_vimeo90k_bd4x_model_udm10_vid4_vimeo90kt_spmc30_inference/visualization/Vid4'
vimeo90kt_srs_path = './results/tca_vimeo90k_bd4x_model_udm10_vid4_vimeo90kt_spmc30_inference/visualization/Vimeo90KT'
udm10_srs_path = './results/tca_vimeo90k_bd4x_model_udm10_vid4_vimeo90kt_spmc30_inference/visualization/UDM10'
metrics_calc = Metrics_calculator(flow_model, loss_fn_vgg, logger, reds4_srs_path, vid4_srs_path,
spmc_srs_path, vimeo90kt_srs_path, udm10_srs_path, exp_name)
metrics_calc.compute_metrics()