-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcc_check_dirbe.py
182 lines (168 loc) · 7.45 KB
/
cc_check_dirbe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Do a comparison between the old numbers for DIRBE and Ricardo's new ones
# 10 February 2021 - Mike Peel - Started
import numpy as np
import matplotlib.pyplot as plt
import astropy.io.fits as fits
from astrocode.astroutils import *
from astrocode.spectra import planckcorr, get_spectrum_constants
from fastcc import *
microns = np.asarray([240, 140, 100, 60, 25, 12, 4.9, 3.5, 2.2, 1.25])
print(1e-9*2.997e8/(microns*1e-6))
spectra = np.asarray([-3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0])
# Old colour corrections
# DIRBE
ccb10 = 0.99049 + 0.00593407 * spectra + 0.0137063 * spectra**2
ccb9 = 0.967133 - 0.0265934 * spectra + 0.0102697 * spectra**2
ccb8 = 1.04217 + 0.0575824 * spectra + 0.0119081 * spectra**2
ccb7 = 1.1 + 0.136703 * spectra + 0.0241758 * spectra**2
ccb6 = 1.22189 + 0.28956 * spectra + 0.042977 * spectra**2
ccb5 = 1.00685 + 0.00615385 * spectra + 0.000679321 * spectra**2
ccb4 = 1.01622 + 0.0435165 * spectra + 0.0230569 * spectra**2
ccb3 = 0.996643 + 0.0 * spectra + 0.0035964 * spectra**2
ccb2 = 0.993217 - 0.00461538 * spectra + 0.00127872 * spectra**2
ccb1 = 0.992797 - 0.00494505 * spectra + 0.0024975 * spectra**2
# IRAS
cci100 = 1.00951 + 0.0223077 * spectra + 0.00893107 * spectra**2
cci60 = 1.04643 + 0.0882418 * spectra + 0.0282717 * spectra**2
cci25 = 1.09448 + 0.124835 * spectra + 0.0202597 * spectra**2
cci12 = 1.09797 + 0.138022 * spectra + 0.0271728 * spectra**2
frequencies = {
'DB10': [1.0056317, -0.0052173, -0.0119257],
'DB9': [1.0347912, 0.0245728, -0.0095350],
'DB8': [0.9593942, -0.0469581, -0.0075185],
'DB7': [0.9079217, -0.0942761, -0.0068850],
'DB6': [0.8160551, -0.1717965, 0.0103011],
'DB5': [0.9816717, -0.0327394, -0.0178211],
'DB4': [0.9947178, -0.0060948, -0.0008378],
'DB3': [1.0030533, -0.0001524, -0.0032236],
'DB2': [1.0064020, 0.0050962, -0.0012763],
'DB1': [1.0073260, 0.0044317, -0.0028791]
}
plt.title('Old')
plt.plot(spectra,1.0/ccb10,label='10')
plt.plot(spectra,1.0/ccb9,label='9')
plt.plot(spectra,1.0/ccb8,label='8')
plt.plot(spectra,1.0/ccb7,label='7')
plt.plot(spectra,1.0/ccb6,label='6')
plt.plot(spectra,1.0/ccb5,label='5')
plt.plot(spectra,1.0/ccb4,label='4')
plt.plot(spectra,1.0/ccb3,label='3')
plt.plot(spectra,1.0/ccb2,label='2')
plt.plot(spectra,1.0/ccb1,label='1')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.savefig('DIRBE.png')
plt.clf()
# plt.title('New')
cc = frequencies.get('DB10', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='10')
cc = frequencies.get('DB9', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='9')
cc = frequencies.get('DB8', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='8')
cc = frequencies.get('DB7', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='7')
cc = frequencies.get('DB6', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='6')
cc = frequencies.get('DB5', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='5')
cc = frequencies.get('DB4', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='4')
cc = frequencies.get('DB3', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='3')
cc = frequencies.get('DB2', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='2')
cc = frequencies.get('DB1', 0)
plt.plot(spectra,cc[0] + cc[1]*spectra + cc[2]*(spectra**2),label='1')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.xlabel('Spectral index')
plt.ylabel('Colour correction')
plt.savefig('DIRBEnew.png')
plt.clf()
# Values from https://lambda.gsfc.nasa.gov/product/cobe/dirbe_exsup.cfm table B.0-1
spectra2 = np.asarray([-3.0, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3])
b1 = np.asarray([1.03, 1.02, 1.01, 1.01, 1.0, 1.0, 0.99, 0.99, 0.99, 0.99, 0.99, 1.0, 1.0])
b2 = np.asarray([1.02, 1.01, 1.01, 1.0, 1.0, 1.0, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99])
b3 = np.asarray([1.03, 1.02, 1.01, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.01, 1.02, 1.03])
b4 = np.asarray([0.99, 1.0, 1.0, 1.0, 1.0, 1.0, 1.01, 1.01, 1.01, 1.02, 1.02, 1.03, 1.03])
b5 = np.asarray([1.09, 1.05, 1.02, 1.01, 1.0, 1.0, 1.02, 1.04, 1.08, 1.13, 1.19, 1.27, 1.36])
b6 = np.asarray([0.71, 0.76, 0.83, 0.91, 1.0, 1.1, 1.23, 1.37, 1.53, 1.72, 1.95, 2.21, 2.52])
b7 = np.asarray([0.89, 0.91, 0.93, 0.96, 1.0, 1.05, 1.1, 1.17, 1.25, 1.34, 1.46, 1.59, 1.75])
b8 = np.asarray([0.97, 0.97, 0.98, 0.99, 1.00, 1.02, 1.04, 1.07, 1.11, 1.15, 1.2, 1.26, 1.33])
b9 = np.asarray([1.14, 1.10, 1.06, 1.03, 1.0, 0.98, 0.97, 0.96, 0.95, 0.95, 0.96, 0.96, 0.98])
b10 = np.asarray([1.1, 1.06, 1.03, 1.01, 1.0, 0.99, 0.99, 1.0, 1.01, 1.03, 1.06, 1.09, 1.13])
plt.title('Supplement values')
plt.plot(spectra2,1/b10,label='10')
plt.plot(spectra2,1/b9,label='9')
plt.plot(spectra2,1/b8,label='8')
plt.plot(spectra2,1/b7,label='7')
plt.plot(spectra2,1/b6,label='6')
plt.plot(spectra2,1/b5,label='5')
plt.plot(spectra2,1/b4,label='4')
plt.plot(spectra2,1/b3,label='3')
plt.plot(spectra2,1/b2,label='2')
plt.plot(spectra2,1/b1,label='1')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.xlabel('Spectral index')
plt.ylabel('Colour correction')
plt.savefig('DIRBEpub.png')
plt.clf()
plt.title('Old')
plt.plot(spectra,1.0/cci100,label='I100')
plt.plot(spectra,1.0/cci60,label='I60')
plt.plot(spectra,1.0/cci25,label='I25')
plt.plot(spectra,1.0/cci12,label='I12')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.savefig('IRASold.png')
plt.clf()
# From https://irsa.ipac.caltech.edu/IRASdocs/archives/colorcorr.html
spectra3 = np.asarray([-3.0, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3])
i100 = np.asarray([1.02, 1.01, 1.00, 1.00, 1.00, 1.00, 1.01, 1.02, 1.04, 1.06, 1.09, 1.12, 1.16])
i60 = np.asarray([1.02, 1.0, 0.99, 0.99, 1.0, 1.02, 1.05, 1.09, 1.15, 1.23, 1.32, 1.44, 1.59])
i25 = np.asarray([0.89, 0.91, 0.93, 0.96, 1.0, 1.04, 1.1, 1.16, 1.23, 1.32, 1.41, 1.53, 1.67])
i12 = np.asarray([0.91, 0.92, 0.94, 0.97, 1.0, 1.04, 1.1, 1.17, 1.25, 1.35, 1.47, 1.61, 1.78])
plt.title('Supplement values')
plt.plot(spectra3,1/i100,label='100um')
plt.plot(spectra3,1/i60,label='60um')
plt.plot(spectra3,1/i25,label='25um')
plt.plot(spectra3,1/i12,label='12um')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.xlabel('Spectral index')
plt.ylabel('Colour correction')
plt.savefig('IRASpub.png')
plt.clf()
# plt.title('New')
params = np.polyfit(spectra3,1.0/i100,2)
print("'I100': ["+str(params[2]) + ', ' + str(params[1]) + ', ' + str(params[0]) + ', 2997],')
plt.plot(spectra,params[2]+params[1]*spectra+params[0]*spectra**2,label='I100')
params = np.polyfit(spectra3,1.0/i60,2)
print("'I60': ["+str(params[2]) + ', ' + str(params[1]) + ', ' + str(params[0]) + ', 4995],')
plt.plot(spectra,params[2]+params[1]*spectra+params[0]*spectra**2,label='I60')
params = np.polyfit(spectra3,1.0/i25,2)
print("'I25': ["+str(params[2]) + ', ' + str(params[1]) + ', ' + str(params[0]) + ', 11988],')
plt.plot(spectra,params[2]+params[1]*spectra+params[0]*spectra**2,label='I25')
params = np.polyfit(spectra3,1.0/i12,2)
print("'I12': ["+str(params[2]) + ', ' + str(params[1]) + ', ' + str(params[0]) + ', 24975],')
plt.plot(spectra,params[2]+params[1]*spectra+params[0]*spectra**2,label='I12')
plt.ylim([0.3,1.3])
plt.xlim([-3,4])
plt.xlabel('Spectral index')
plt.ylabel('Colour correction')
l = plt.legend(prop={'size':11})
l.set_zorder(20)
plt.savefig('IRASnew.png')
plt.clf()