-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_full_rl.py
265 lines (227 loc) · 9.55 KB
/
train_full_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
""" full training (train rnn-ext + abs + RL) """
import argparse
import json
import pickle as pkl
import os
from datetime import datetime
from os.path import join, exists
from itertools import cycle
from toolz.sandbox.core import unzip
from cytoolz import identity
from ConfManager import ConfManager
from utils import get_gpu_memory_map, print_config
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
sorted_gpu_info = get_gpu_memory_map()
for gpu_id, (mem_left, util) in sorted_gpu_info:
if mem_left >= 2000:
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# args.cuda = f'cuda:{gpu_id}'
print('use gpu:{} with {} MB left, util {}%'.format(gpu_id, mem_left, util))
break
else:
print(f'no gpu has memory left >= MB, exiting...')
exit()
import torch
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from data.data import CnnDmDataset
from data.batcher import tokenize
from model.rl import ActorCritic
from model.extract import PtrExtractSumm
from training import BasicTrainer
from rl import get_grad_fn
from rl import A2CPipeline
from decoding import load_best_ckpt
from decoding import Abstractor, ArticleBatcher
from metric import compute_rouge_l, compute_rouge_n
import random
import numpy as np
seed = 111
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
MAX_ABS_LEN = 30
class RLDataset(CnnDmDataset):
""" get the article sentences only (for decoding use)"""
def __init__(self, split):
super().__init__(split, os.environ["DATA"])
def __getitem__(self, i):
js_data = super().__getitem__(i)
art_sents = js_data['article']
abs_sents = js_data['abstract']
return art_sents, abs_sents, js_data['id']
def load_ext_net(ext_dir):
ext_meta = json.load(open(join(ext_dir, 'meta.json')))
assert ext_meta['net'] == 'ml_rnn_extractor'
ext_ckpt = load_best_ckpt(ext_dir)
ext_args = ext_meta['net_args']
vocab = pkl.load(open(join(ext_dir, 'vocab.pkl'), 'rb'))
ext = PtrExtractSumm(**ext_args)
ext.load_state_dict(ext_ckpt)
return ext, vocab
def configure_net(abs_dir, ext_dir, cuda):
""" load pretrained sub-modules and build the actor-critic network"""
# load pretrained abstractor model
if abs_dir is not None:
abstractor = Abstractor(abs_dir, MAX_ABS_LEN, cuda)
else:
abstractor = identity
# load ML trained extractor net and buiild RL agent
extractor, agent_vocab = load_ext_net(ext_dir)
agent = ActorCritic(extractor._sent_enc,
extractor._art_enc,
extractor._extractor,
ArticleBatcher(agent_vocab, cuda))
if cuda:
agent = agent.cuda()
net_args = {}
net_args['abstractor'] = (None if abs_dir is None
else json.load(open(join(abs_dir, 'meta.json'))))
net_args['extractor'] = json.load(open(join(ext_dir, 'meta.json')))
return agent, agent_vocab, abstractor, net_args
def configure_training(opt, lr, clip_grad, lr_decay, batch_size,
gamma, reward, stop_coeff, stop_reward):
assert opt in ['adam']
opt_kwargs = {}
opt_kwargs['lr'] = lr
train_params = {}
train_params['optimizer'] = (opt, opt_kwargs)
train_params['clip_grad_norm'] = clip_grad
train_params['batch_size'] = batch_size
train_params['lr_decay'] = lr_decay
train_params['gamma'] = gamma
train_params['reward'] = reward
train_params['stop_coeff'] = stop_coeff
train_params['stop_reward'] = stop_reward
return train_params
def build_batchers(batch_size):
def coll(batch):
art_batch, abs_batch, i_batch = unzip(batch)
art_sents = list(filter(bool, map(tokenize(None), art_batch)))
abs_sents = list(filter(bool, map(tokenize(None), abs_batch)))
return art_sents, abs_sents, list(i_batch)
loader = DataLoader(
RLDataset('train'), batch_size=batch_size,
shuffle=True, num_workers=4,
collate_fn=coll
)
val_loader = DataLoader(
RLDataset('val'), batch_size=batch_size,
shuffle=False, num_workers=4,
collate_fn=coll
)
test_loader = DataLoader(
RLDataset('test'), batch_size=batch_size,
shuffle=False, num_workers=4,
collate_fn=coll
)
return cycle(loader), val_loader, test_loader
def train(args):
if not exists(args.path):
os.makedirs(args.path)
# make net
agent, agent_vocab, abstractor, net_args = configure_net(
args.abs_dir, args.ext_dir, args.cuda)
# configure training setting
train_params = configure_training(
'adam', args.lr, args.clip, args.decay, args.batch,
args.gamma, args.reward, args.stop, 'rouge-1'
)
train_batcher, val_batcher, test_batcher = build_batchers(args.batch)
reward_fn = compute_rouge_l
stop_reward_fn = compute_rouge_n(n=1)
# save abstractor binary
if args.abs_dir is not None:
abs_ckpt = {}
abs_ckpt['state_dict'] = load_best_ckpt(args.abs_dir)
abs_vocab = pkl.load(open(join(args.abs_dir, 'vocab.pkl'), 'rb'))
abs_dir = join(args.path, 'abstractor')
os.makedirs(join(abs_dir, 'ckpt'))
with open(join(abs_dir, 'meta.json'), 'w') as f:
json.dump(net_args['abstractor'], f, indent=4)
torch.save(abs_ckpt, join(abs_dir, 'ckpt/ckpt-0-0'))
with open(join(abs_dir, 'vocab.pkl'), 'wb') as f:
pkl.dump(abs_vocab, f)
# save configuration
meta = {}
meta['net'] = 'rnn-ext_abs_rl'
meta['net_args'] = net_args
meta['train_params'] = train_params
with open(join(args.path, 'meta.json'), 'w') as f:
json.dump(meta, f, indent=4)
with open(join(args.path, 'agent_vocab.pkl'), 'wb') as f:
pkl.dump(agent_vocab, f)
# prepare trainer
grad_fn = get_grad_fn(agent, args.clip)
# for name, param in agent.named_parameters():
# print('{} {} {}'.format(name, type(param.data), param.size()))
optimizer = optim.Adam(agent.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# optimizer = optim.Adam(agent.parameters(), **train_params['optimizer'][1])
# NB no scheduler
scheduler = None
# scheduler = ReduceLROnPlateau(optimizer, 'max', verbose=True,
# factor=args.decay, min_lr=0,
# patience=args.lr_p)
pipeline = A2CPipeline(meta['net'], agent, abstractor,
train_batcher, val_batcher, test_batcher,
optimizer, grad_fn,
reward_fn, args.gamma,
stop_reward_fn, args.stop)
trainer = BasicTrainer(pipeline, args.path,
args.ckpt_freq, args.patience, scheduler,
val_mode='score', args=args)
print('start training with the following hyper-parameters:')
print(meta)
trainer.train()
print(f'[{remark}]')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model options
parser.add_argument('--abs_dir', action='store',
help='pretrained summarizer model root path', default='saved_model/abs_sent')
parser.add_argument('--ext_dir', action='store',
help='root of the extractor model', default='saved_model/ext_sent')
parser.add_argument('--ckpt', type=int, action='store', default=None,
help='ckeckpoint used decode')
# training options
parser.add_argument('--reward', action='store', default='rouge-l',
help='reward function for RL')
parser.add_argument('--lr', type=float, action='store', default=5e-4,
help='learning rate')
parser.add_argument('--weight_decay', type=float, action='store', default=0,
help='weight_decay')
parser.add_argument('--decay', type=float, action='store', default=0.5,
help='learning rate decay ratio')
parser.add_argument('--lr_p', type=int, action='store', default=5,
help='patience for learning rate decay')
parser.add_argument('--gamma', type=float, action='store', default=0.95,
help='discount factor of RL')
parser.add_argument('--stop', type=float, action='store', default=10.0,
help='stop coefficient for rouge-1')
parser.add_argument('--clip', type=float, action='store', default=2.0,
help='gradient clipping')
parser.add_argument('--batch', type=int, action='store', default=8,
help='the training batch size')
parser.add_argument(
'--ckpt_freq', type=int, action='store', default=100,
help='number of update steps for checkpoint and validation'
)
parser.add_argument('--patience', type=int, action='store', default=30,
help='patience for early stopping')
parser.add_argument('--no-cuda', action='store_true',
help='disable GPU training')
args = parser.parse_args()
cm = ConfManager()
args.cuda = torch.cuda.is_available() and not args.no_cuda
args.data = cm.TRAIN_SC
remark = f'data{args.data}_{cm.mode}_{cm.remark}'
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
args.path = os.path.join(cm.save_path, current_time + '_' + remark)
print_config(args)
os.environ["DATA"] = os.path.join(cm.DATA, args.data)
train(args)